EECS 2001A : Introduction to the Theory of Computation

Suprakash Datta

Course page: http://www.eecs.yorku.ca/course/2001
Also on Moodle

Review of Some Mathematics

- Sets
- Functions
- Graphs
- Recursive definitions
- Logic

Next

Review of sets

Sets

- Representations
- Notation: \in, \subseteq, \subset
- Common sets: natural numbers (\mathbb{N}), integers (\mathbb{Z}), real numbers (\mathbb{R}), positive real numbers $\mathbb{R}^{+}=\{x \mid x \in \mathbb{R}, x>0\}$
- Universal set
- Custom defined: $L_{\text {prime }}=\{x \mid x \in \mathbb{N}, x$ is prime $\}$
- Operations: Union $(A \cup B)$, Intersection $(A \cap B)$, Complement $\left(A^{c}\right)$
- Cardinality: $|A|$

Sets - Examples and Properties

- Cartesian Product: $A \times B=\{(a, b) \mid a \in A, b \in B\}$
- If $\Sigma=\{0,1\}$, then $\Sigma \times \Sigma=\{(0,0),(0,1),(1,0),(1,1)\}$
- Power set: set of all subsets of a set A. $\mathcal{P}(A)=\{S \mid S \subseteq A\}$
- If $A=\{x, y\}$, then $\mathcal{P}(A)=\{\{ \},\{x\},\{y\},\{x, y\}\}$
- For any set $A, A \in \mathcal{P}(A)$ and $\emptyset \in \mathcal{P}(A)$
- For finite sets, $|\mathcal{P}(A)|=2^{|A|},|A \times B|=|A| *|B|$

Next

Review of functions

Functions

- $f: A \rightarrow C$, for all $a \in A, f(a) \in C$
- $f: A \times B \rightarrow C$, for all $a \in A, b \in B, f(a, b) \in C$
- Examples:

$$
\begin{aligned}
& f: \mathbb{N} \rightarrow \mathbb{N}, f(a)=3 a+1 \\
& f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}, f(a, b)=3 a+2 b+a b+1
\end{aligned}
$$

- Types: injective (one-one), surjective (onto), bijective (1:1 correspondence)

Functions: Representation

- Formula: $f: \mathbb{N} \rightarrow \mathbb{N}, f(a)=3 a+1$
- Table: $g:\{a, b\} \times\{0,1\} \rightarrow\{a, b\}$

	0	1
a	a	b
b	b	a

- List $(f):\{(1,4),(2,7),(3,10),(4,13), \ldots\}$

Each pair: first element is the input, second element is the output

- List $(g):\{(a, 0, a),(a, 1, b),(b, 0, b),(b, 1, a)\}$

Each triple: first 2 elements are inputs, last element is the output

Next

Review of graphs

Graphs

- Nodes and Edges, weights
- Undirected, directed
- Cycles, trees
- Connected
- New: Self-loops

Examples

Next

Introduction to recursive definitions

Recursive definitions - 1

(1) Sequences, E.g., Fibonacci sequence: $f_{i}, i \in \mathbb{N}$

- $f_{1}=f_{2}=1$
- for $n>2, f_{n}=f_{n-1}+f_{n-2}$
(2) Structures, E.g., Binary trees
- an empty tree is a binary tree
- a node pointing to two binary trees, one its left child and the other one its right child, is a binary tree
(3) Sets, Example: Even natural numbers N_{e}.
- $2 \in N_{e}$
- $\forall n \in N_{e}, n+2 \in N_{e}$
- No other numbers are in N_{e}

Recursive definitions - 2

Recursively defined sets of binary strings:

- Example 1: The set of palindromic strings P
- $\epsilon \in P$
- $0 \in P, 1 \in P$
- $\forall x \in P, 0 x 0 \in P, 1 x 1 \in P$
- No other strings are in P
- Example 2: The set E of all binary strings with an equal number of zeroes and ones.
- $\epsilon \in E$
- for every x, y in $E, 0 x 1 y$ and $1 x 0 y$ are both in E
- nothing else is in E.

Recursive definitions - Exercises

- Recursively define the following:
- The set of odd natural numbers
- The sequence of powers of $3(1,3,9,27,81, \ldots)$
- The set of all strings over $\{0,1\}$ that have exactly one zero
- What set L does the following definition produce? $a \in L$; for any $x \in L, a x, b x, x b$ are in L. Nothing is in L unless it can be obtained by the previous statements
- Prove that Example 2 on the previous slide is correct

Next

Review of Logic

Logic Review - 1

- Boolean Logic: The only 'truth values' are True, False
- Operations: \vee, \wedge, $ᄀ$
- Quantifiers: \forall, \exists
- statement: Suppose $x \in \mathbb{Z}, y \in \mathbb{Z}$, then $\forall x \exists y(y>x)$ "for any integer, there exists a larger integer"
- Logical equivalence: $a \rightarrow b$ "is the same as" (is logically equivalent to) $\neg a \vee b$
- Bidirectional Implication: $a \leftrightarrow b$ is logically equivalent to $(a \rightarrow b) \wedge(b \rightarrow a)$

Logic Review - 2

Contrapositive and converse:

- the contrapositive of $a \rightarrow b$ is $\neg b \rightarrow \neg a$
- the converse of $a \rightarrow b$ is $b \rightarrow a$
- Any statement is logically equivalent to its contrapositive, but not to its converse.

Logic Review - 3

- Predicate Logic: each variable must be quantified:
$\forall x(x<y)$ is meaningless
(Abuse of notation: $\forall x \in \mathbb{R}$...)
- Implication or AND/OR?
- "All parrots like chilies" $\forall x(\operatorname{Parrot}(x) \wedge$ LikeChilies $(x))$
vs
$\forall x(\operatorname{Parrot}(x) \rightarrow$ LikeChilies $(x))$
- "Some parrots like chilies"
$\exists x(\operatorname{Parrot}(x) \wedge$ LikeChilies $(x))$
vs
$\exists x(\operatorname{Parrot}(x) \rightarrow$ LikeChilies $(x))$

Logic Review - 4

Subtleties of quantifiers

- Negation of statements: $\neg(a \rightarrow b)=$?
$\neg(\forall x \exists y(y>x)) \equiv \exists x \forall y(y \leq x)$
LHS: negation of "for every integer, there exists a larger integer",
RHS: "there exists an integer that is larger than every integer"
- $\forall x \exists y P(x, y)$ is not the same as $\exists y \forall x P(y, x)$

Consider $P(y, x): x \leq y$.
$\forall x \exists y(x \leq y)$ is TRUE over \mathbb{Z} (set $y=x+1)$
$\exists y \forall x(x \leq y)$ is FALSE over \mathbb{Z} (there is no largest number in \mathbb{Z})

Understanding which Quantifier to Use

\exists or \forall ?

- Some people like basketball
- People are careless when it comes to social distancing
- Humans are mortal
- Discrete Math problems are hard

