EECS 2001A: Introduction to the Theory of Computation

Suprakash Datta

Course page: http://www.eecs.yorku.ca/course/2001 Also on Moodle

Review of Some Mathematics

- Sets
- Functions
- Graphs
- Recursive definitions
- Logic

Review of sets

Sets

- Representations
- Notation: \in , \subseteq , \subset
- Common sets: natural numbers (\mathbb{N}), integers (\mathbb{Z}), real numbers (\mathbb{R}), positive real numbers $\mathbb{R}^+ = \{x | x \in \mathbb{R}, x > 0\}$
- Universal set
- Custom defined: $L_{prime} = \{x | x \in \mathbb{N}, x \text{ is prime}\}$
- Operations: Union $(A \cup B)$, Intersection $(A \cap B)$, Complement (A^c)
- Cardinality: |A|

Sets - Examples and Properties

- Cartesian Product: $A \times B = \{(a, b) | a \in A, b \in B\}$
- If $\Sigma = \{0, 1\}$, then $\Sigma \times \Sigma = \{(0, 0), (0, 1), (1, 0), (1, 1)\}$
- Power set: set of all subsets of a set A. $\mathcal{P}(A) = \{S | S \subseteq A\}$
 - If $A = \{x, y\}$, then $\mathcal{P}(A) = \{\{\}, \{x\}, \{y\}, \{x, y\}\}$
 - For any set A, $A \in \mathcal{P}(A)$ and $\emptyset \in \mathcal{P}(A)$
 - For finite sets, $|\mathcal{P}(A)| = 2^{|A|}$, $|A \times B| = |A| * |B|$

Review of functions

Functions

- $f: A \to C$, for all $a \in A$, $f(a) \in C$
- $f: A \times B \rightarrow C$, for all $a \in A, b \in B, f(a, b) \in C$
- Examples:

$$f: \mathbb{N} \to \mathbb{N}, \ f(a) = 3a+1$$

 $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}, \ f(a,b) = 3a+2b+ab+1$

• Types: injective (one-one), surjective (onto), bijective (1:1 correspondence)

Functions: Representation

- Formula: $f: \mathbb{N} \to \mathbb{N}$, f(a) = 3a + 1
- Table: $g : \{a, b\} \times \{0, 1\} \rightarrow \{a, b\}$

	0	1
а	а	b
b	b	а

- List (f): $\{(1,4),(2,7),(3,10),(4,13),\ldots\}$ Each pair: first element is the input, second element is the output
- List (g): $\{(a,0,a),(a,1,b),(b,0,b),(b,1,a)\}$ Each triple: first 2 elements are inputs, last element is the output

Review of graphs

Graphs

- Nodes and Edges, weights
- Undirected, directed
- Cycles, trees
- Connected
- New: Self-loops

Examples

Introduction to recursive definitions

Recursive definitions - 1

- **1** Sequences, E.g., Fibonacci sequence: f_i , $i \in \mathbb{N}$
 - $f_1 = f_2 = 1$
 - for n > 2, $f_n = f_{n-1} + f_{n-2}$
- 2 Structures, E.g., Binary trees
 - an empty tree is a binary tree
 - a node pointing to two binary trees, one its left child and the other one its right child, is a binary tree
- \odot Sets, Example: Even natural numbers N_e .
 - 2 ∈ N_e
 - $\forall n \in N_e, n+2 \in N_e$
 - No other numbers are in N_e

Recursive definitions - 2

Recursively defined sets of binary strings:

- Example 1: The set of palindromic strings P
 - ϵ ∈ P
 - 0 ∈ P, 1 ∈ P
 - $\forall x \in P, 0x0 \in P, 1x1 \in P$
 - No other strings are in P
- Example 2: The set *E* of all binary strings with an equal number of zeroes and ones.
 - ϵ ∈ E
 - for every x, y in E, 0x1y and 1x0y are both in E
 - nothing else is in *E*.

Recursive definitions - Exercises

- Recursively define the following:
 - The set of odd natural numbers
 - The sequence of powers of 3 (1, 3, 9, 27, 81, ...)
 - ullet The set of all strings over $\{0,1\}$ that have exactly one zero
- What set L does the following definition produce? $a \in L$; for any $x \in L$, ax, bx, xb are in L. Nothing is in L unless it can be obtained by the previous statements
- Prove that Example 2 on the previous slide is correct

Review of Logic

- Boolean Logic: The only 'truth values' are True, False
- Operations: ∨, ∧, ¬
- Quantifiers: \forall , \exists
- statement: Suppose $x \in \mathbb{Z}, y \in \mathbb{Z}$, then $\forall x \exists y (y > x)$ "for any integer, there exists a larger integer"
- Logical equivalence: $a \rightarrow b$ "is the same as" (is logically equivalent to) $\neg a \lor b$
- Bidirectional Implication: $a \leftrightarrow b$ is logically equivalent to $(a \rightarrow b) \land (b \rightarrow a)$

Contrapositive and converse:

• the contrapositive of $a \rightarrow b$ is $\neg b \rightarrow \neg a$

• the converse of $a \rightarrow b$ is $b \rightarrow a$

 Any statement is logically equivalent to its contrapositive, but not to its converse.

Predicate Logic: each variable must be quantified:

```
\forall x (x < y) is meaningless (Abuse of notation: \forall x \in \mathbb{R}...)
```

- Implication or AND/OR?
 - "All parrots like chilies" $\forall x (Parrot(x) \land LikeChilies(x))$ vs $\forall x (Parrot(x) \rightarrow LikeChilies(x))$
 - "Some parrots like chilies" $\exists x (Parrot(x) \land LikeChilies(x))$ vs $\exists x (Parrot(x) \rightarrow LikeChilies(x))$

Subtleties of quantifiers

• Negation of statements: $\neg(a \rightarrow b) = ?$ $\neg(\forall x \exists y (y > x)) \equiv \exists x \forall y (y < x)$

LHS: negation of "for every integer, there exists a larger integer".

RHS: "there exists an integer that is larger than every integer"

• $\forall x \exists y P(x, y)$ is not the same as $\exists y \forall x P(y, x)$ Consider $P(y, x) : x \leq y$. $\forall x \exists y (x \leq y)$ is TRUE over \mathbb{Z} (set y = x + 1) $\exists y \forall x (x \leq y)$ is FALSE over \mathbb{Z} (there is no largest number in \mathbb{Z})

Understanding which Quantifier to Use

 \exists or \forall ?

Some people like basketball

- People are careless when it comes to social distancing
- Humans are mortal

Discrete Math problems are hard