EECS 2001A : Introduction to the Theory of Computation

Suprakash Datta

Course page: http://www.eecs.yorku.ca/course/2001
Also on Moodle

Another Characterization of Regular Languages

Regular Expressions

- Unix 'grep' command: Global Regular Expression and Print
- Lexical Analyzer Generators (part of compilers)
- Other practical uses in software design
- Will see some examples and then formulate a precise definition
- Finally will obtain another characterization of regular languages!

Examples of Regular Expressions

- $e_{1}=a \cup b, L\left(e_{1}\right)=\{a, b\}$
- $e_{2}=a b \cup b a, L\left(e_{2}\right)=\{a b, b a\}$
- $e_{3}=a^{*}, L\left(e_{3}\right)=\{a\}^{*}$
- $e_{4}=(a \cup b)^{*}, L\left(e_{4}\right)=\{a, b\}^{*}$
- $e_{5}=\left(e_{m} \cdot e_{n}\right), L\left(e_{5}\right)=L\left(e_{m}\right) \cdot L\left(e_{n}\right)$
- $e_{6}=a^{*} b \cup a^{*} b b, L\left(e_{6}\right)=\left\{w \mid w \in\{a, b\}^{*}\right.$ and w has 0 or more a's followed by 1 or $2 b$'s $\}$

Regular Expressions: Recursive Definition

Regular Expressions (RE)

- $R=a$, with $a \in \Sigma: R \in R E$
- $R=\epsilon$ (empty expression): $R \in R E$
- $R=\emptyset: R \in \mathrm{RE}$
- $R=\left(R_{1} \cup R_{2}\right)$, where $R_{1}, R_{2} \in \mathrm{RE}: R \in R E$
- $R=\left(R_{1} \cdot R_{2}\right)$, where $R_{1}, R_{2} \in \mathrm{RE}: R \in \mathrm{RE}$
- $R=\left(R_{1}^{*}\right)$, where $R_{1} \in R E: R \in R E$

Precedence order: $*, \cdot, \cup$

Regular Expressions: Identities

- $R_{1} \emptyset=\emptyset R_{1}=\emptyset$
- $R_{1} \epsilon=\epsilon R_{1}=R_{1}$
- $R_{1} \cup \emptyset=\emptyset \cup R_{1}=R_{1}$
- $R_{1} \cup R_{1}=R_{1}$
- $R_{1} \cup R_{2}=R_{2} \cup R_{1}$
- $R_{1}\left(R_{2} \cup R_{3}\right)=R_{1} R_{2} \cup R_{1} R_{3}$
- $\left(R_{1} \cup R_{2}\right) R_{3}=R_{1} R_{3} \cup R_{2} R_{3}$
- $R_{1}\left(R_{2} R_{3}\right)=\left(R_{1} R_{2}\right) R_{3}$
- $\emptyset^{*}=\epsilon$
- $\epsilon^{*}=\epsilon$
- $\left(\epsilon \cup R_{1}\right)^{*}=R_{1}^{*}$

Regular Expressions: The Big Result

Regular expressions (RE) and Regular Languages are the same set

- Theorem 1.54 Let L be a language. Then L is regular if and only if there exists a regular expression that describes L
- Part 1: If a language is described by a regular expression, then it is regular (We will show how to convert a regular expression R into an NFA M such that $L(R)=L(M)$)
- Part 2: If a language is regular, then it can be described by a regular expression

Part 1: RE to RL (NFA construction)

Construction: Use recursive definition

- $R=\emptyset, R=\epsilon$
- $R=a$, with $a \in \Sigma$
- $R=\left(R_{1} \cup R_{2}\right)$, with R_{1} and R_{2} regular expressions
- $R=\left(R_{1} \cdot R_{2}\right)$, with R_{1} and R_{2} regular expressions
- $R=\left(R_{1}^{*}\right)$, with R_{1} a regular expression

Last 3 are similar to closure of RL under union, concatenation, star

RE to NFA: Examples

- $R=a b \cup b a(L=\{a b, b a\})$
- $R=a b(a b)^{*}(L=\{a b, a b a b, a b a b a b, \ldots\})$

Part 2: RL to RE

If a language is regular, then it can be described by a regular expression.

- Why is this useful?
- one use in answering "what language does this NFA accept?"
- We prove this by constructing a RL equivalent to a given NFA.
- Proof strategy:
- regular implies equivalent DFA
- convert DFA to generalized NFA (GNFA): NFA that have regular expressions as transition labels
- convert GNFA to a form where the RE can be "read off"

Example GNFA

GNFA Definition

Generalized non-deterministic finite automaton $M=\left(Q, \Sigma, \delta, q_{\text {start }}, q_{\text {accept }}\right)$ with

- Q : finite set of states
- Σ : the input alphabet
- $q_{\text {start }}:$ the start state
- $q_{\text {accept }}$: the (unique) accept state
- $\delta:\left(Q \backslash\left\{q_{\text {accept }}\right\}\right) \times\left(Q \backslash\left\{q_{\text {start }}\right\}\right) \rightarrow \mathcal{R}$ is the transition function (\mathcal{R} is the set of regular expressions over Σ)
(NOTE THE NEW DEFN OF δ)

GNFA δ function

- The interior $Q \backslash\left\{q_{\text {accept }}, q_{\text {start }}\right\}$ is "fully connected" by δ
- From $q_{\text {start }}$ only 'outgoing transitions'
- To qaccept only 'incoming transitions'
- Missing $q_{i} \rightarrow q_{j}$ transitions are labeled $\delta\left(q_{i}, q_{j}\right)=\emptyset$

NFA to RE conversion

- given a DFA M, construct an equivalent GNFA M^{\prime} with $k \geq 2$ states by adding a start and an accept state and connecting them to the old start and accept states with ϵ-transitions
- Add missing $q_{i} \rightarrow q_{j}$ transitions with the label \emptyset
- Merge transitions $q_{i} \xrightarrow{a} q_{j}, q_{i} \xrightarrow{b} q_{j}$ by replacing them with $q_{i} \xrightarrow{\mathrm{a} b} q_{j}$
- Reduce one-by-one the internal states until $k=2$
- This GNFA will be of the form

- This regular expression R will be such that $L(R)=L(M)$

NFA to RE: Removing States

- identify internal state $q_{\text {rip }}$ to be removed
- For every $q_{i} \in Q \backslash\left\{q_{\text {accept }}\right\}, q_{j} \in Q \backslash\left\{q_{\text {start }}\right\}$, do the following

- Each such state removal preserves equivalence between the old and the converted GNFA

NFA to RE Conversion: Proof of Correctness

- Fairly complicated construction
- Can be programmed, so can be automatically computed
- The formal proof is by induction on the number of states k of the GNFA we started from, and is omitted

NFA to RE: Example

$L=\{w \mid$ the sum of the bits of w is odd $\}$

- The DFA for this language is:

- Step 1: Add the new start and accept states:

NFA to RE: Example

Step 2: Add in all the missing edges

Note: the start state will only have outgoing edges and the accept state will only have incoming edges

NFA to RE: Example

Step 3: Eliminate q_{0}

Note: the start state will only have outgoing edges and the accept state will only have incoming edges

NFA to RE: Example

Step 4: Eliminate q_{1}

Result: $\operatorname{RL} L=\{w \mid$ the sum of the bits of w is odd $\}$ is equivalent to $\operatorname{RE} 0^{*} 1\left(0 \cup 10^{*} 1\right)^{*}$

