EECS 2001A : Introduction to the Theory of Computation

Suprakash Datta

Course page: http://www.eecs.yorku.ca/course/2001 Also on Moodle

Another Characterization of Regular Languages

Regular Expressions

- Unix 'grep' command: Global Regular Expression and Print
- Lexical Analyzer Generators (part of compilers)
- Other practical uses in software design
- Will see some examples and then formulate a precise definition
- Finally will obtain another characterization of regular languages!

Examples of Regular Expressions

•
$$e_1 = a \cup b$$
, $L(e_1) = \{a, b\}$

•
$$e_2 = ab \cup ba$$
, $L(e_2) = \{ab, ba\}$

•
$$e_3 = a^*$$
, $L(e_3) = \{a\}^*$

•
$$e_4 = (a \cup b)^*$$
, $L(e_4) = \{a, b\}^*$

•
$$e_5 = (e_m \cdot e_n), \ L(e_5) = L(e_m) \cdot L(e_n)$$

•
$$e_6 = a^*b \cup a^*bb$$
, $L(e_6) = \{w | w \in \{a, b\}^* \text{ and } w \text{ has } 0 \text{ or } more a's followed by 1 or 2 b's}$

Regular Expressions: Recursive Definition

Regular Expressions (RE)

- R = a, with $a \in \Sigma$: $R \in RE$
- $R = \epsilon$ (empty expression): $R \in RE$
- $R = \emptyset$: $R \in RE$
- $R = (R_1 \cup R_2)$, where $R_1, R_2 \in \operatorname{RE}$: $R \in \operatorname{RE}$
- $R = (R_1 \cdot R_2)$, where $R_1, R_2 \in \text{RE}$: $R \in \text{RE}$

•
$$R = (R_1^*)$$
, where $R_1 \in \text{RE}$: $R \in \text{RE}$
Precedence order: $*, \cdot, \cup$

Regular Expressions: Identities

- $R_1 \emptyset = \emptyset R_1 = \emptyset$
- $R_1\epsilon = \epsilon R_1 = R_1$
- $R_1 \cup \emptyset = \emptyset \cup R_1 = R_1$
- $R_1 \cup R_1 = R_1$
- $R_1 \cup R_2 = R_2 \cup R_1$
- $R_1(R_2 \cup R_3) = R_1R_2 \cup R_1R_3$
- $(R_1 \cup R_2)R_3 = R_1R_3 \cup R_2R_3$
- $R_1(R_2R_3) = (R_1R_2)R_3$
- $\emptyset^* = \epsilon$
- $\epsilon^* = \epsilon$
- $(\epsilon \cup R_1)^* = R_1^*$

Regular Expressions: The Big Result

Regular expressions (RE) and Regular Languages are the same set

- Theorem 1.54 Let *L* be a language. Then *L* is regular if and only if there exists a regular expression that describes *L*
- Part 1: If a language is described by a regular expression, then it is regular (We will show how to convert a regular expression R into an NFA M such that L(R) = L(M))
- Part 2: If a language is regular, then it can be described by a regular expression

Part 1: RE to RL (NFA construction)

Construction: Use recursive definition

- $R = \emptyset, R = \epsilon$
- R = a, with $a \in \Sigma$
- $R = (R_1 \cup R_2)$, with R_1 and R_2 regular expressions
- $R = (R_1 \cdot R_2)$, with R_1 and R_2 regular expressions
- $R = (R_1^*)$, with R_1 a regular expression

 q_0

RE to NFA: Examples

•
$$R = ab \cup ba \ (L = \{ab, ba\})$$

•
$$R = ab(ab)^* (L = \{ab, abab, ababab, \ldots\})$$

Part 2: RL to RE

If a language is regular, then it can be described by a regular expression.

- Why is this useful?
 - one use in answering "what language does this NFA accept?"
- We prove this by constructing a RL equivalent to a given NFA.
- Proof strategy:
 - regular implies equivalent DFA
 - convert DFA to generalized NFA (GNFA): NFA that have regular expressions as transition labels
 - convert GNFA to a form where the RE can be "read off"

Example GNFA

GNFA Definition

Generalized non-deterministic finite automaton $M = (Q, \Sigma, \delta, q_{start}, q_{accept})$ with

- Q: finite set of states
- Σ : the input alphabet
- *q_{start}*: the start state
- q_{accept}: the (unique) accept state

• $\delta : (Q \setminus \{q_{accept}\}) \times (Q \setminus \{q_{start}\}) \rightarrow \mathcal{R}$ is the transition function (\mathcal{R} is the set of regular expressions over Σ) (NOTE THE NEW DEFN OF δ)

GNFA δ function

- The interior $Q \setminus \{q_{accept}, q_{start}\}$ is "fully connected" by δ
- From *q_{start}* only 'outgoing transitions'
- To q_{accept} only 'incoming transitions'
- Missing $q_i \rightarrow q_j$ transitions are labeled $\delta(q_i, q_j) = \emptyset$

NFA to RE conversion

- given a DFA M, construct an equivalent GNFA M' with k ≥ 2 states by adding a start and an accept state and connecting them to the old start and accept states with ε-transitions
- Add missing $q_i
 ightarrow q_j$ transitions with the label \emptyset
- Merge transitions $q_i \xrightarrow{a} q_j$, $q_i \xrightarrow{b} q_j$ by replacing them with $q_i \xrightarrow{a \cup b} q_j$
- Reduce one-by-one the internal states until k = 2

- This GNFA will be of the form
- This regular expression R will be such that L(R) = L(M)

NFA to RE: Removing States

- identify internal state q_{rip} to be removed
- For every $q_i \in Q \setminus \{q_{accept}\}, q_j \in Q \setminus \{q_{start}\}$, do the following

• Each such state removal preserves equivalence between the old and the converted GNFA

NFA to RE Conversion: Proof of Correctness

• Fairly complicated construction

• Can be programmed, so can be automatically computed

• The formal proof is by induction on the number of states *k* of the GNFA we started from, and is omitted

An Example

NFA to RE: Example

- $L = \{w | \text{ the sum of the bits of } w \text{ is odd} \}$
 - The DFA for this language is:

• Step 1: Add the new start and accept states:

An Example

NFA to RE: Example

Step 2: Add in all the missing edges

Note: the start state will only have outgoing edges and the accept state will only have incoming edges

NFA to RE: Example

Step 3: Eliminate q_0 $0 \cup 10^*1$ q_s q_0 q_1 ϵ q_a

Note: the start state will only have outgoing edges and the accept state will only have incoming edges

An Example

NFA to RE: Example

Step 4: Eliminate q_1

Result: RL $L = \{w | \text{ the sum of the bits of } w \text{ is odd}\}$ is equivalent to RE $0^*1(0 \cup 10^*1)^*$