EECS 2001A : Introduction to the Theory of
Computation

Suprakash Datta

Course page: http://www.eecs.yorku.ca/course/2001
Also on Moodle

S. Datta (York Univ.) EECS 2001A S 2020 1/19


http://www.eecs.yorku.ca/course/2001

Another Characterization of Regular Languages

Regular Expressions

@ Unix ‘grep’ command: Global Regular Expression and Print

@ Lexical Analyzer Generators (part of compilers)

@ Other practical uses in software design

@ Will see some examples and then formulate a precise definition

e Finally will obtain another characterization of regular languages!

S. Datta (York Univ.) EECS 2001A S 2020 2/19



Examples of Regular Expressions

@ ¢ =aUb, L(e) ={a, b}

@ e = abU ba, L(ey) = {ab, ba}

° &5 =2a" L(e3) ={a}*

e ¢, =(aUb)", L(eg) ={a,b}"

@ es=(en-e), Les) = L(em) - L(en)

@ e =a*bUa*bb, L(e) = {w|w € {a, b}* and w has 0 or

more a’s followed by 1 or 2 b’s}

S. Datta (York Univ.) EECS 2001A S 2020 3/19



Regular Expressions: Recursive Definition

Regular Expressions (RE)
@ R=a, withaeX2: Re RE
@ R = ¢ (empty expression): R € RE
e R=0: RERE
@ R=(RiURy), where R, R, € RE: R € RE
@ R=(Ri-Ry), where R, R, € RE: R € RE

e R=(R;), where R, € RE: R € RE
Precedence order: x, -, U

S. Datta (York Univ.) EECS 2001A S 2020

4/19



s Bpresion |
Regular Expressions: ldentities

R = 0R, =10

Rie=eRi =R,
RRUD=0DUR =R,
RRUR =Ry

RRUR, =R,UR;
Ri(RUR3) = RiR, URR;
(RiUR)R; = RiR3 U RyR;
Ri(R2R3) = (RiR2)Rs

0 =e

€ =€

(E U R]_)* = Rik

S. Datta (York Univ.) EECS 2001A S 2020 5/19



Regular Expressions: The Big Result

Regular expressions (RE) and Regular Languages are the same set

@ Theorem 1.54 Let L be a language. Then L is regular if and only
if there exists a regular expression that describes L

e Part 1: If a language is described by a regular expression, then it
is regular (We will show how to convert a regular expression R
into an NFA M such that L(R) = L(M))

@ Part 2: If a language is regular, then it can be described by a
regular expression

S. Datta (York Univ.) EECS 2001A S 2020 6/19



Part 1: RE to RL (NFA construction)

Construction: Use recursive
definition
e R=0,R=¢
@ R=a, withaeX
e R= (Rl U Rz), with
R; and R, regular
expressions
R = (Rl . Rg), with Rl @
and R, regular
expressions

R = (R;y), with R; a Last 3 are similar to closure of RL
regular expression under union, concatenation, star

a

S. Datta (York Univ.) EECS 2001A S 2020 7/19



RE to NFA: Examples

@ R=abUba (L = {ab, ba})

@ R = ab(ab)* (L = {ab, abab, ababab, . ..})

S. Datta (York Univ.) EECS 2001A S 2020 8/19



Part 2: RL to RE

If a language is regular, then it can be described by a regular
expression.

@ Why is this useful?
— one use in answering “what language does this NFA accept?”

@ We prove this by constructing a RL equivalent to a given NFA.

@ Proof strategy:
e regular implies equivalent DFA

o convert DFA to generalized NFA (GNFA): NFA that have
regular expressions as transition labels

e convert GNFA to a form where the RE can be “read off”

S. Datta (York Univ.) EECS 2001A S 2020 9/19



Regular Expressions

Example GNFA

@ou01 @ (11)*

S. Datta (York Univ.) EECS 2001A S 2020 10/19



GNFA Definition

Generalized non-deterministic finite automaton
M = (Qa Z, 67 Qstart, qaccept) with
@ Q: finite set of states

@ > : the input alphabet
@ (ot the start state
® Qaccept: the (unique) accept state

0 0 : (Q\{Gaccept}) X (Q\{Gstart}) = R is the transition function
(R is the set of regular expressions over ¥)

(NOTE THE NEW DEFN OF ¢)

S. Datta (York Univ.) EECS 2001A S 2020 11/19



GNFA 6 function

@ The interior Q\{Gaccept; Gstart } is "fully connected” by ¢

@ From g+ only ‘outgoing transitions’

@ To Gaccept ONly ‘incoming transitions’

e Missing g; — g; transitions are labeled §(q;, q;) = 0

S. Datta (York Univ.) EECS 2001A S 2020 12/19



NFA to RE conversion
e given a DFA M, construct an equivalent GNFA M" with k > 2

states by adding a start and an accept state and connecting
them to the old start and accept states with e-transitions

Add missing g; — g; transitions with the label {)

Merge transitions q; — g, qi =N q; by replacing them with
Ub
q = q;

Reduce one-by-one the internal states until kK = 2

:
This GNFA will be of the form e

This regular expression R will be such that L(R) = L(M)

S. Datta (York Univ.) EECS 2001A S 2020 13/19



Regular Expressions

NFA to RE: Removing States

@ identify internal state g,, to be removed

o For every q; € Q\{Gaccept }+ qj € Q\{Gstart }, do the following

R
OasO=LEN0)
2 Ry U RLR: R

@ Each such state removal preserves equivalence between the old
and the converted GNFA

S. Datta (York Univ.) EECS 2001A S 2020 14 /19



Regular Expressions

NFA to RE Conversion: Proof of Correctness

@ Fairly complicated construction

@ Can be programmed, so can be automatically computed

@ The formal proof is by induction on the number of states k of
the GNFA we started from, and is omitted

S. Datta (York Univ.) EECS 2001A S 2020 15/19



Regular Expressions An Example

NFA to RE: Example

L = {w]| the sum of the bits of w is odd}
@ The DFA for this language is:

S. Datta (York Univ.) EECS 2001A S 2020 16 /19



Sl
NFA to RE: Example

Step 2: Add in all the missing edges

Note: the start state will only have outgoing edges and the accept
state will only have incoming edges

S. Datta (York Univ.) EECS 2001A S 2020 17 /19



Sl
NFA to RE: Example

Step 3: Eliminate qq

Note: the start state will only have outgoing edges and the accept
state will only have incoming edges

S. Datta (York Univ.) EECS 2001A S 2020 18/19



Sl
NFA to RE: Example

Step 4: Eliminate g;

0*1(0 U 10*1)*

Result: RL L = {w/| the sum of the bits of w is odd}
is equivalent to RE 0*1(0 U 10*1)*

S. Datta (York Univ.) EECS 2001A S 2020 19/19



	Regular Expressions
	An Example


