EECS 2001A : Introduction to the Theory of
Computation

Suprakash Datta

Course page: http://www.eecs.yorku.ca/course/2001
Also on Moodle

S. Datta (York Univ.) EECS 2001A S 2020 1/18

http://www.eecs.yorku.ca/course/2001

The Big Question

Note that
@ NFA can solve every problem that DFA can (DFA are also NFA)

@ Can DFA solve every problem that NFA can?

@ In other words: Are NFA more powerful than DFA?

S. Datta (York Univ.) EECS 2001A S 2020 2/18

The Surprising Answer

We will prove that
@ every NFA is equivalent to a DFA (with upto exponentially more
states)

@ Non-determinism does not help FA's to recognize more
languages!

@ NFAs recognize regular languages

@ Corollary: DFAs and NFAs can be used interchangeably to solve
problems or study properties of regular languages

S. Datta (York Univ.) EECS 2001A S 2020 3/18

Terminology: e-closure

o Let N=(Q,%,0,qo, F) be any NFA

(]

Consider any set R C @

(]

Define E(R) = {q|q can be reached from a state in R by
following 0 or more e-transitions}

@ E(R) is the e- closure of R under e-transitions

S. Datta (York Univ.) EECS 2001A S 2020 4/18

Equivalence of DFA, NFA

@ Statement: For all languages L C ¥*,

L = L(N) for some NFA N if and only if L = L(M) for some
DFA M

@ One direction is easy:
A DFA M is also a NFA N. So N does not have to be
“constructed” from M

@ The other direction: Construct M from N

S. Datta (York Univ.) EECS 2001A S 2020 5/18

Equivalence of DFA, NFA - A Special Case

Given N = (Q, X, 0, qo, F), construct M = (Q', £, ', g, F') so that
for any w € ¥*, M accepts w if and only if N accepts w.
First a special case: Assume that NFA N has no e-transitions

@ Need to keep track of each subset of @
° So Q'=P(Q),q ={q0}
e (R,a) =U(0(r,a)) overall re R,R e Q

o F'={R € Q'|R contains an accept state of F}

Next: let us assume that e-transitions are used in N

S. Datta (York Univ.) EECS 2001A S 2020

6/18

Equivalence of DFA, NFA - The General Case

° qo=E({q0})

e foral Re Q and ac X
§(R,a) ={q € Q|g € E(4(r, a)) for some r € R}

o F'={R € Q'|R contains an accept state of N}

S. Datta (York Univ.) EECS 2001A S 2020

7/18

Why This Construction Works...

for any string w € X%,

@ can argue informally that w is accepted by N iff w is accepted
by M

@ Can prove using induction on the number of steps of
computation

S. Datta (York Univ.) EECS 2001A S 2020 8/18

Closure: Reuvisiting Old Terminology

A set is defined to be closed under an operation if that operation on
members of the set always produces a member of the same set. E.g.:

@ The integers are closed under addition, multiplication
@ The integers are not closed under division
@ > * is closed under concatenation

@ A set can be defined by closure — £* is called the (Kleene)
closure of X under concatenation.

S. Datta (York Univ.) EECS 2001A S 2020 9/18

New Terminology: Regular Operations

The regular operations are:

@ Union
@ Concatenation

o Star (Kleene Closure): For a language A, define
A* ={wiwows ... wx|k > 0, and each w; € A}

Want to prove that regular languages are closed under regular
operations

S. Datta (York Univ.) EECS 2001A S 2020 10/18

Proving Closure under Regular Operations
We showed that regular languages are closed under:
@ Complementation

@ Union
We got stuck at concatenation, and introduced nondeterminism
Next, we show closure under

@ Union (easier proof)

@ Concatenation

o Star (Kleene Closure)

S. Datta (York Univ.) EECS 2001A S 2020 11/18

Back to Regular Languages

Proving Closure Under Union

D
0 © /Q @
N O /F\\
N
O O SNege
\K:J/‘ i M \,//
—= a0
®)
H= Q) ONN®)
O <> N CD
.
O - O
N () N O
N)
- N
M
EECS 2001A § 2020

12/18

Back to Regular Languages

Proving Closure Under Concatenation

7= - (N
OM®©) = Q)
'
O 0 O~
N\ ~ O
ONG®) o O
’ @/ <
13 e = N
= O SO
; Y
N W
- O YT o
O e
oNed © O

S. Datta (York Univ.) EECS 2001A S 2020 13/18

Back to Regular Languages

Proving Closure Under Kleene Star

Y e /-
v O ow®
() N y -
() 7 | (
O L@\ O
O © 00
A N
M

S. Datta (York Univ.) EECS 2001A S 2020 14 /18

Incorrect reasoning about RL

@ Since Ly ={w|lw=2a",ne N}, L, = {w|w = b",n € N} are
regular, therefore Ly - L, = {w|w = a"b", n € N} is regular

e If Ly is a regular language, then L, = {wR|w € L;} is regular,
and therefore L; - Ly = {wwR|w € L} is regular

S. Datta (York Univ.) EECS 2001A S 2020 15/18

Putting it all together

A recursive definition for regular languages
o (), {€} and {a} for any symbol a € ¥ are regular languages

o If Ly and L, are regular languages, then Ly U Ly, L;L, and L7 are
regular languages.

@ Nothing is a regular language unless it is obtained from the
above two clauses.

S. Datta (York Univ.) EECS 2001A S 2020 16 /18

Every Finite Language is Recognized by a NFA

@ Given a word w = wyws...wy there is a NFA that recognizes
{w}. Example of w = wywaws

@ Use the union construction on languages containing single
words...

S. Datta (York Univ.) EECS 2001A S 2020

17/18

Regular Languages: Exercises

@ Prove the following result:
If Ly and L, are regular languages, then L; N L, is a regular
language too

@ Describe the language that is recognized by this NFA:
1 0,1

S. Datta (York Univ.) EECS 2001A S 2020 18/18

	The Big Question
	Back to Regular Languages
	All finite languages are regular

