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Equivalence of PDA, CFL

@ Theorem 2.20 (2.12 in 2nd Ed): A language L is context-free if
and only if there is a pushdown automata M that recognizes L.

@ Two step proof:
1) Given a CFG G, construct a PDA Mg
2) Given a PDA M, make a CFG Gy,

@ Converting a CFL to a PDA: Lemma 2.21

e The PDA should simulate the derivation of a word in the CFG
and accept if there is a derivation.

o Need to store intermediate strings of terminals and variables.
How?
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Converting a CFG to an Equivalent PDA

@ First idea: Store all intermediate strings in the derivation in the
stack
- Does not work

@ Store only a suffix of the string of terminals and variables
derived at the moment starting with the first variable

@ The prefix of terminals up to but not including the first variable
is checked against the input
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Converting a CFG to an Equivalent PDA - 2

Informal description

@ Push the usual $ marker into the empty stack

@ Repeat forever:

o If the top of stack symbol is a variable A, pop A, choose a rule
A — ... nondeterministically and put the RHS of the rule into
the stack

e If the top of the stack is a terminal a, match it against the
input. If it does not match reject, else continue

o If the top of the stack is a $, accept
@ A 3 state PDA is enough: p 120 3rd Ed.
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Converting a PDA to an Equivalent CFG

@ Lemma 2.27 in 3rd Ed
@ Design a grammar equivalent to a PDA

@ |dea: For each pair of states p, g we have a variable A,, that
generates all strings that take the automaton from p to g
(empty stack to empty stack).
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Converting a PDA to an Equivalent CFG - Details

@ Assume
e Single accept state

e Stack emptied before accepting

e Each transition either pops or pushes a symbol
@ Can create rules for all the possible cases (p 122 in 3rd Ed)
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Beyond CFL's

Are there problems not solvable by PDA?
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Is there a Non-CFL?

The language L = {a"b"c"|n > 0,n € Z} does not appear to be
context-free.

@ Informal: The problem is that every variable can (only) act ‘by
itself’ (context-free)

@ We can only keep the numbers of 2 of a, b, ¢ equal

o If we think of a PDA, again we can only keep the numbers of 2
of a, b, ¢ equal
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Can we “pump” CFL's?

If so, we may be able to use it to prove that a language is not a CFL.
What repeats if we have to derive long strings?
@ One possibility is variables

@ Some variable(s) must be repeated to derive long strings

@ Idea: If we can prove that some derivations use the step
A =* vAy, then a new form of ‘pumping’ holds:
A =% vAy =% V2Ay? =7 V3AYS =

@ For this to happen the word derived must be long enough
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Pumping CFLs
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Pumping Lemma
Pumping Lemma for CFL's

Let L be a CFL. Then there exists a pumping length p > 1, and every
string s € L, with |s| > p, can be written as s = uvxyz, such that

@ |vy| > 1 (i.e., v and y are not both empty),
Q |wxy| < p, and

Q@ uwixyize L, foralli>0
Note
@ 3) implies that uxz € L (“pumping down”)

@ 2) is not always used
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Examples
Using the Pumping Lemma for CFL’s

Prove: {a"b"c"|n > 0} is not a CFL
@ Assume that B = {a"b"c"|n > 0} is CFL
@ Let p be the pumping length, and s = aPbPcP € B
@ PL.: s = uvxyz = aPbPcP, with uvixy’z € B for all i > 0
@ Options for |vxy/|:
o The strings v and y are uniform: (v=a...aandy=c...c,
for example)
Then uv?xy?z will not contain the same number of a’s, b’s and
c's, hence uv?xy?z ¢ B
e v and y are not uniform.
Then uv?xy?z will not be a...ab...bc...c. Hence
uv?xy’z & B
@ So Bis not a CFL

S. Datta (York Univ.) EECS 2001A S 2020 12/14



Examples
Using the Pumping Lemma for CFL's - 2

Prove: C = {a'b/cd/lk >j>i>0}is not a CFL
@ Assume that C is CFL
@ Let p be the pumping length, and s = aPbPcP € C
o PL.: s = uvxyz = aPbPcP, with uvixy’z € C forall i >0

@ Options for 1 < |vxy| < p:
e v =a*b*: Then uvxy?z will not contain enough c's, so
uv?xy’z & C

o v = b*c*: Then uv®xy°z = uxz will have twwo many a’s.

Hence uv?xyz ¢ C
@ So Cis not a CFL
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Examples
Using the Pumping Lemma for CFL's - 3

Prove: D = {ww|w € {0,1}*} is not a CFL
@ Assume that D is CFL

@ Let p be the pumping length, and s = 0P1P0P1P € D
e PL.: s = uvxyz = 0P1P0P1P, with uvixy’z € D for all i > 0

@ Options for 1 < |vxy| < p:
o If a part of y is to the left of | in 0P1P|0P1P, then second half of
uv?xy?z starts with ‘1, so uv?xy?z ¢ D
e Same reasoning if a part of v is to the right of the middle of
0P1P|0P1P, hence uv?xy?z & D
o If x is in the middle of 0P1P|0P1P, then uxz equals 0P1'0/1P ¢ D
(because i or j is less than p)

@ So D is not a CFL
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