EECS 2001A : Introduction to the Theory of Computation

Suprakash Datta

Course page: http://www.eecs.yorku.ca/course/2001
Also on Moodle

Pushdown automata (PDA)

Add a stack to a Finite Automaton

- Can serve as type of memory or counter
- More powerful than Finite Automata
- Accepts Context-Free Languages (CFLs)
- Unlike FAs, nondeterminism makes a difference for PDAs. We will only study non-deterministic PDAs and omit DPDAs.
- Pushdown automata are for context-free languages what finite automata are for regular languages.

Pushdown automata - 2

- PDAs are recognizing automata that have a single stack (=memory): Last-In-First-Out pushing and popping
- Non-deterministic PDA's can make non-deterministic choices (like NFAs) to find accepting paths of computation
- Informally: The PDA M reads w and stack element. Depending on: input $w_{i} \in \Sigma_{\epsilon}$, stack element $s_{j} \in \Gamma_{\epsilon}$ and - state $q_{k} \in Q$, the PDA M - jumps to a new state and pushes an element from Γ_{ϵ} into the stack (nondeterministically)
If possible to end in an accepting state $q \in F \subseteq Q$, then M accepts w

Pushdown automata - Formal Description

A Pushdown Automata M is defined by a 6-tuple $\left(Q, \Sigma, \Gamma, \delta, q_{0}, F\right)$:

- finite set of states Q
- finite input alphabet Σ
- finite stack alphabet 「
- start state $q_{0} \in Q$
- set of accepting states $F \subseteq Q$
- transition function $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \rightarrow \mathcal{P}\left(Q \times \Gamma_{\epsilon}\right)$

Pushdown automata - Example 1

PDA for language $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$

- The PDA first pushes " $\$ 0$ "" on stack
- Then, while reading the 1^{n} string, the zeros are popped
- If, in the end, $\mathbb{\$}$ is left on stack, then "accept"

Pushdown automata - Tracing

On $w=000111$ (state; stack) evolution:

- $\left(q_{0} ; \epsilon\right) \rightarrow\left(q_{1} ; \$\right) \rightarrow\left(q_{1} ; 0 \$\right) \rightarrow\left(q_{1} ; 00 \$\right) \rightarrow\left(q_{1} ; 000 \$\right) \rightarrow$ $\left(q_{2} ; 00 \$\right) \rightarrow\left(q_{2} ; 0 \$\right) \rightarrow\left(q_{2} ; \$\right) \rightarrow\left(q_{2} ; \epsilon\right) . q_{3}$: accept state On $w=0101$:
- $\left(q_{0} ; \epsilon\right) \rightarrow\left(q_{1} ; \$\right) \rightarrow\left(q_{1} ; 0 \$\right) \rightarrow\left(q_{1} ; \$\right) \rightarrow\left(q_{2} ; \epsilon\right) \rightarrow\left(q_{3} ; \epsilon\right)$
- But we still have part of input "01". There is no accepting path

Pushdown automata - Example 2 (Sec 3.6.3)

$$
\text { Suppose } \Sigma=\{a, b\} \text {. Design a PDA for } L=\{v b w \| v|=|w|\}
$$

- 2 states q_{0} (start state) and q_{1}
- state q_{0} : automaton has not reached the middle symbol b
- state q_{1} : automaton has read the middle symbol b
- in state q_{0} it either
- pushes one symbol onto the stack and stays in state q_{0}, or
- if the current input symbol is b, it nondeterministically "guesses" that it has reached the middle of the input string, and switches to state q_{1}
- in state q_{1}, it pops the top symbol from the stack and stays in state q_{1}
- The input string is accepted if and only if, at the end of input, the automaton is in state q_{1} and the top symbol on the stack is $\$$

Pushdown automata - Exercises

- $L=\left\{w w^{R} \mid w\right.$ is any binary string $\}$
- $L=\left\{a^{i} b^{j} a^{k} \mid i=j\right.$ or $\left.i=k\right\}$

Union

- Lemma: Let A_{1} and A_{2} be two CFL's, then the union $A_{1} \cup A_{2}$ is a CFL as well.
- Proof: Assume that the two grammars are $G_{1}=\left(V_{1}, \Sigma, R_{1}, S_{1}\right)$ and $G_{2}=\left(V_{2}, \Sigma, R_{2}, S_{2}\right)$.
Assume that V_{1}, V_{2} are disjoint (if not rename variables so that they are).
Construct a third grammar $G_{3}=\left(V_{3}, \Sigma, R_{3}, S_{3}\right)$ as: $V_{3}=V_{1} \cup V_{2} \cup\left\{S_{3}\right\}$ (S_{3} is the new start variable) $R_{3}=R_{1} \cup R_{2} \cup\left\{S_{3} \rightarrow S_{1} \mid S_{2}\right\}$.
It follows that $L\left(G_{3}\right)=L\left(G_{1}\right) \cup L\left(G_{2}\right)$.

Intersection and Complement

- Let A_{1} and A_{2} be two CFL's
- One can prove that, in general, the intersection $A_{1} \cap A_{2}$ and the complement $\overline{A_{1}}$ are not CFL's
- One proves this with specific counter examples of languages.

