EECS 2001A: Introduction to the Theory of Computation

Suprakash Datta

Course page: http://www.eecs.yorku.ca/course/2001 Also on Moodle

Simpler CFG's: Chomsky Normal Form

A CFG $G = (V, \Sigma, R, S)$ is in "Chomsky normal form" if every rule is of the form

- $A \rightarrow BC$, $A, B, C \in V$, or
- A → x,
 with variables A ∈ V and B, C ∈ V\{S}, and x ∈ Σ
 Note: this implies that the start variable cannot be on the right side of a rule
- ullet For the start variable S we also allow the rule $S
 ightarrow \epsilon$
- Obvious fact: All regular languages are also context free languages

Advantage: Grammars in this form are far easier to analyze

Converting a CFG to Chomsky Normal Form

Outline of Proof:

- We rewrite every CFG in Chomsky normal form
- We do this by replacing, one-by-one, every rule that is not 'Chomsky'
- We have to take care of:
 - Starting Symbol
 - \bullet ϵ symbol,
 - all other violating rules.

Converting a CFG to CNF - details

Given a context-free grammar $G = (V, \Sigma, R, S)$, rewrite it to Chomsky Normal Form by

- New start symbol S_0 (and add rule $S_0 o S$)
- Remove $A \to \epsilon$ rules (from the tail): before: $B \to xAy$ and $A \to \epsilon$, after: $B \to xAy|xy$
- Remove unit rules $A \to B$ (by the head): before: $A \to B$ and $B \to xCy$ after: $A \to xCy$ and $B \to xCy$
- Shorten all rules to two: before: $A \to B_1B_2 \dots B_k$, after: $A \to B_1A_1$, $A_1 \to B_2A_2$, ..., $A_{k-2} \to B_{k-1}B_k$
- ullet Replace ill-placed terminals a by T_a with $T_a o a$

Converting a CFG to CNF - points to note

Do not re-introduce rules removed earlier

• Example: $A \rightarrow A$ simply disappears

• When removing $A \to \epsilon$ rules, insert **all** new replacements: $B \to AaA$ becomes $B \to AaA|aA|Aa|a$

Converting a CFG to CNF - Example

Initial CFG:

$$S \rightarrow aSb|\epsilon$$

CNF:

- $S_0 \rightarrow \epsilon |T_a T_b| T_a X$
- $X \rightarrow ST_b$
- $S \rightarrow T_a T_b | T_a X$
- $T_a \rightarrow a$
- $T_b \rightarrow b$