EECS 2001A: Introduction to the Theory of Computation

Suprakash Datta

Course page: http://www.eecs.yorku.ca/course/2001
Also on Moodle

Grammars

Another model of languages

Study languages recognized by different types of grammars

Regular Grammars and Regular Languages

A regular grammar $G = (V, \Sigma, R, S)$ is defined by

- V: a finite set of variables
- Σ : finite set terminals (with $V \cap \Sigma = \emptyset$)
- *R*: finite set of substitution rules $V \to (V \cup \Sigma \cup \Sigma V)$
 - $A \rightarrow \epsilon$, $A \in V$
 - $A \rightarrow a$, $a \in \Sigma$, $A \in V$
 - $A \rightarrow aB$, $a \in \Sigma$, $A, B \in V$
- S: start symbol $\in V$

Notation: Rules are combined as follows: $A \rightarrow a$, $A \rightarrow aB$ are written as $A \rightarrow a|aB$

Regular Grammar: Derivation

- A single step derivation ⇒ consist of the substitution of a variable by a string according to a substitution rule
- Example: with the rules $A \to 0B, A \to 1A$, we can have the derivation $01A \Rightarrow 010B$
- ullet A sequence of several derivations (or none) is indicated by " \Rightarrow *"
- Same example: $0A \Rightarrow^* 11110B$
- define the language generated by G to be $L(G) = \{w | S \Rightarrow^* w, \text{ where } w \in \Sigma^*\}$

Regular Grammar: Example

- $\Sigma = \{0, 1\}, V = \{S, T\}$
 - $S \rightarrow \epsilon$
 - $S \rightarrow 0S$
 - $S \rightarrow T$
 - $T \rightarrow 1T$
 - $T \rightarrow \epsilon$
- Example derivation: $S \Rightarrow^* 0001111$
- This generates the language

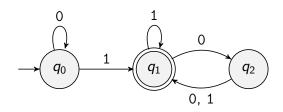
$$L = \{0^m 1^n | m, n \in \mathbb{Z}, m, n \ge 0\}$$

Regular Grammar from a DFA

Given a DFA $M = (Q, \Sigma, \delta, q_0, F)$, we construct a corresponding regular grammar $G_M = (V, \Sigma, R, S)$ with

- V = Q
- $S = q_0$
- Rules of G_M :
 - $q_i o x\delta(q_i,x)$ for all $q_i \in V$ and all $x \in \Sigma$
 - $q_i \rightarrow \epsilon$ for all $q_i \in F$

Regular Grammar from a DFA - 2



- $\Sigma = \{0,1\}, V = \{q_0, q_1, q_2\}, S = q_0$
- Rules of G_M :
 - $ullet q_0
 ightarrow 0 q_0 |1 q_1$
 - $ullet q_1
 ightarrow 0 q_2 |1 q_1| \epsilon$
 - $q_2 \to 0 q_1 |1 q_1$

Two Problems

- \bullet Given a grammar G, find the language it generates
- Given a grammar G and a word w, determine if $w \in L(G)$ [Parsing]

Analogous problems:

Given an English sentence, determine if its is grammatically correct

• Given a Java program, determine if it compiles

More Complex Languages

- Grammar view: how can we make the grammar richer?
 More complex rules, e.g. of the form
 - $A \rightarrow aAb$, $a, b \in \Sigma$, $A \in V$
 - $A \rightarrow aBC$, $a \in \Sigma$, $A, B, C \in V$

- Machine view: how can we augment a FA?
 Augment a FA with a stack
 - We will return to this view later

Do More Complex Grammars Help?

A Grammar for the Nonregular Language

$$L = \{0^n 1^n | n \in \mathbb{Z}, n \ge 0\}$$

- $S \rightarrow 0S1$
- $S \rightarrow \epsilon$

S yields 0^n1^n according to the derivation:

$$S \rightarrow 0S1 \rightarrow 00S11 \rightarrow \ldots \rightarrow 0^{n}S1^{n} \rightarrow 0^{n}1^{n}$$

Context-free Languages

- Simplest grammar more complex than regular grammars
- Model for natural languages (Noam Chomsky)
- Specification of programming languages: "parsing of a computer program"
- "context free": Rules of the form S → aSbTbb.
 The rule can be applied regardless of what is before or after S in an expression (context)
- "context sensitive": there is context in the left hand side of a rule, e.g. $bC \to bc$

Context-free Languages

Human languages use context in word or phrase meanings

 Compilation of programs would be very difficult if programming languages were not context free

Regular languages are context-free

Context-free Grammar (CFG)

- A CFG $G = (V, \Sigma, R, S)$ is defined by
 - V: a finite set of variables
 - Σ : finite set terminals (with $V \cap \Sigma = \emptyset$)
 - *R*: finite set of substitution rules $V \to (V \cup \Sigma)^*$
 - S: start symbol $\in V$

Notation: Rules are combined using '|' like before

Examples of CFL's

- $L(G) = \{0^n 1^{2n} | n = 1, 2, \ldots\}$
- $L(G) = \{0^n 1^n | n = 1, 2, ...\} \cup \{1^n 0^n | n = 1, 2, ...\}$
- $L(G) = \{xx^R | x \text{ is a string over } \{a, b\}\}$
- Properly parenthesized expressions Solution:

$$G = (V, \Sigma, R, S)$$
, where $V = \{S\}$, $\Sigma = \{(,)\}$, and $R = \{S \rightarrow \epsilon, S \rightarrow (S), S \rightarrow SS\}$

Harder Examples of CFL's

- $L(G) = \{x | x \text{ is a string over } \{0, 1\} \text{ with an equal number of 1's and 0's} \}$ Solution:
 - $G=(V,\Sigma,R,S)$, where $V=\{S\}$, $\Sigma=\{0,1\}$, and $R=\{S o\epsilon,S o0S1S,S o1S0S\}$
- Verifying non-negative number addition

$$L = \{a^n b^m c^{n+m} | n \ge 0, m \ge 0, m, n \in \mathbb{Z}\}$$

- Verify L is not regular
- Intuition: every time an 'a' or 'b' are added, a 'c' must be added
- Rules:
 - $S \rightarrow \epsilon | A$
 - $A \rightarrow \epsilon |aAc|B$
 - $B \rightarrow \epsilon | bBc$
- We can eliminate $S \to \epsilon$, $A \to \epsilon$