Destination prediction by Markov Model based approaches
and Multi-layer Perceptron

Yifan Li
Department of Electric Engineering and
Computer Science
York University

ABSTRACT

Destination prediction has a great importance in order to
serve a variety of location- based applications, for example,
analyzing road traffic conditions to help good urban traf-
fic management. Although researchers have done a great
amount of work proposing different models, it is always
needed to make more accurate prediction. Thus, in this
paper, we put forward two models to enhance the accuracy
of predicting the destination of a vehicle based on its de-
parture location and zero or more intermediate locations.
The first model we propose, Group-level Markov model, is
an up-dated version of Markov model which is widely used
in location prediction. In our group model, we make use
of the similarities between users to help the prediction pro-
cess for an individual user. We build an iterative framework
to train this model which converges with little time. The
other model is Multilayer perceptron model with an embed-
ding layer that is employed to combine nominal ID with
numerical location information as a flexible and powerful
method to simulate complex relations and patterns. Final-
ly, we present our experiments that have been conducted on
a real world data set to compare our proposed models with
two state-of-art models: PMM and GMM. The results show
that Group-level Markov model performs well as the best
while the MLP was not so satisfactory. Finally, analyzing
the result and future work are discussed.

1. INTRODUCTION

The development of positioning technology nowadays gives
rise to plenty of trajectory data sets. For example, social ap-
plications like Twitter allow users to post their location in
the form of check-in, which usually consists of a user identi-
fication, a time-stamp and related text. A series of check-in
information forms a trajectory[13]. Moreover, the advanced
traffic management system using surveillance infrastructures
in highways and city streets makes it easy to track vehicles
and pedestrians. In general, a trajectory is a time-ordered
locations produced by a specific user.

Khadijah Alroogi
Department of Electric Engineering and
Computer Science
York University

Also, in modern sedentary environment, everyday people’s
displacement behaviors and have many similarities. For
white-collar workers, they may go to work from home, shop
at the nearest supermarket after work, and visiting the pop-
ular cinema is likely to appear in such a pattern, too. Those
similarities make it possible to mine one’s moving pattern
based on his or her previous trajectories.

Destination prediction is one of the most discussed problems
in the area of trajectory mining. The purpose of destination
prediction is to find the possible destinations of a vehicle
based on its departure location and zero or more intermedi-
ate locations. An efficient and accurate destination predic-
tion algorithm has a great importance for users, owners of
the trajectory data, traffic management departments, and
advertising platforms. For example, if some advertisement
platforms know where a user is going, then they can rec-
ommend shops and restaurants near the destination, and by
this way they can target potential customers while saving
time and expense[5]. Also, traffic management departments
can schedule vehicles based on their destinations in advance
to prevent traffic jam.

The most challenging part of destination problem is that we
need to make prediction as early as possible, which means
information is limited - we may only know several starting
locations of a long trajectory and are required to make pre-
diction among thousands of possible destinations. Another
problem is about sparsity, a specific user may only have vis-
ited a small number of places in the city, and we need to
react as normal when he visits a new place.

The issue of trajectory based destination prediction is al-
ready discussed in many different studies. First, some stud-
ies have taken into account a one main idea of using the
external information, as vehicle ID or the travel time, to
improve the quality of the prediction process. In particular
[4] as the winners of the of the Kaggle-ECML/PKDD dis-
covery competition on on taxi destination prediction, have
used a multi-layer perceptrons neural network in order to
predict the destination of a taxi based on the beginning
of its trajectory and other meta-information like departure
time, driver id and client information. Although this was
the first-place solution in that competition, in general neu-
ral network outcomes are hard to interpret and cannot be
used for better understanding of the characteristics of the
dataset. Moreover,[7, 14] worked on same idea of merging
Bayesian methods with some external information such as
road status, traffic condition, trajectory length, departure
time, and driving habits to predict destinations based his-
torical trajectories.

On the other hand, some other researchers have proposed
different new models to get high quality prediction. Par-
ticularly, in [8]a T-pattern decision tree was built to ex-
tract movement patterns and then predict based on finding
the best matching path in the tree. Also, [10] introduced
a nearest neighbor trajectory method based on a distance
measures to identify the historical trajectory that is most
similar to the current partial trajectory. Finally, most of
the studies that conducted in the field to solve the problem
have used probabilistic procedures to serve the prediction
process through constructing probability models. In partic-
ular, the Markov model was the most to use in predicting
destinations[12, 1, 3]. [12] builds a Markov model for each
single user and make prediction for a user based on indi-
vidual previous trajectories. However, this is only possible
when a user seldom visit new place. Also, this model can
suffer from great performance descent due to data sparsi-
ty, especially when dealing with problems containing large
number of locations. [1] proposes a combination of individu-
al trajectories and all-user-trajectories. That’s to say, build
a Markov model for each user based on this user’s individual
trajectories (referred as Personal Markov Model or PMM),
and build a Markov model based on all trajectories (referred
as Global Markov Model or GMM). When making predic-
tions, combine PMM and GMM with some probability and
get result. This algorithm, although performs well in most
situations, can also be problematic sometimes. For example,
when most users share identical pattern, this pattern will
have great influence on the final result when making pre-
diction for users in the remaining group who actually have
different moving intention. [3] find a way to make prediction
for a user with the assistance of similar users. This model
considers the skewed data problem, but the performance is
heavily depend on the method computing the similarity be-
tween different objects, and it’s almost impossible to find a
judgment method which fits all mobility patterns.

We propose two modified models in this paper, one is in-
spired by clustering strategy learned in class, and the other
one is inspired by Word2Vector method in Natural Language
Processing.

The clustering based model is an updated version of PM-
M and GMM mentioned above. We also consider grouping
here, but different from [3], no judgment meth ods are used
here. We break the prediction problem into two parts in
this model: group-level Markov models learn the moving
patterns of all groups, and self-adjustable grouping method
to cluster users with similar mobility behavior. We found
these two sub-tasks can influence each other. That’s to say,
well-performed Markov models can help to group users more
accurately, and a better grouping can improve the perfor-
mance of Markov models. Based on this discovery, we solve
the problem under an iterative framework which alternates
between training Markov models and grouping users.

The embedding based model is similar to Multi-layer Percep-
tron. In Natural Language Processing, embedding method
is used to transfer nominal attibutes[9] to continuous values
with the consideration of distance between attributes. Here
we used embedding layer to transfer user ID into vector, and
this vector is the input of MLP together with location infor-
mation. One-hot output is supposed to specify the possible
destination of this trajectory.

We summarize the main contributions of our work as follows:

e We put forward a group-level method which combine
clustering with Markov model to solve destination pre-
diction problem. This method avoids data sparsity
while requires no external similarity computation method
such as KD-divergence or Jaccard similarity.

e We propose an iterative framework to train Group-
ing Markov model. In grouping phase, the probabili-
ty that a specific user belongs to a group will be ad-
justed according to parameters of Markov model to
provide higher within-group consistence. In modeling
phase, Markov parameters are updated based on the
new grouping condition to give a higher prediction ac-
curacy.

e We introduce an embedding layer to MLP to solve
prediction problem with ID. Embedding ID with lo-
cation vectors here frees us from paying extra atten-
tion to group related problems. Also, we can model
more complicated relations between trajectory prefix
and destination.

e We perform experiments with a real data set and com-
pare the results with existing models PMM and GMM.
Models in this paper outperformed baseline by provid-
ing more accurate prediction.

The rest of the paper is organized as follows: In Section 2, we
give some basic concepts to help understanding the problem
and the models, and address the target of this paper;In sec-
tion 3, we introduce the Markov model; further, in section 4,
PMM are discussed, including its principle, advantage, and
how to apply it to out data set; Similarly, we introduce GM-
M in section 5; In Section 6, we introduce how Group-level
Markov model works and give its iterative framework. In
Section 7, we give the architecture of embedding-combining
MLP. In Section 8, the results of experiments and evaluation
are given. At last, we conclude the paper in Section 9.

2. PRELIMINARIES

In this section, we first introduce fundamental concepts
used in following sections, and then give a brief definition of
the problem to be solved in this paper.

Definition 1. Location. A location [is defined as a point
or a region where the position of a user is recorded. A user
may pass through a set of locations and may pass a location
for several times.

Definition 2. Trajectory. A trajectory is a time-ordered
locations sequence. A trajectory is produced by a user with-
in a given time period. A trajectory T is in the form:
(l1,l2y ooy ln).

Definition 3. Prefix. Given a trajectory T' = (1, l2, ..., ln),
a prefix P is the first k locations in T, where 1 < k <n — 1.
Prefix information if the input when predict destinations.
The length of prefix is randomly set by program.

Definition 4. Candidate Destinations. A location [; is
a candidate destination give prefix P, if a user can at last
arrive at l; after passing P.

Definition 5. User group. A user group contains users
who share identical or similar mobility patterns. A user may
belong to several groups with different probabilities sum up
to 1.

Given the random prefix of a user’s trajectory sequence, the
aim of destination prediction is to find possible location(s)
which the user will arrive at lastly with great possibility.

3. MARKOV MODEL

Markov model is designed to simulate stochastic system
and uncover the transition rules. It has been deeply proved
that Markov model performs ideally dealing with predic-
tion problem [11, 2]. When predicting possible destinations,
Markov model regards the mobility patterns as a discrete s-
tochastic process. In our problem, a state in Markov model
corresponds to a specific location, and state transition de-
notes the process of moving from a location to another. Let
T be a trajectory of length n and p(l,4+1|P) refers to the
probability of arriving at [,41 after prefix P. Every next
location is computed with:

lnt1 = argmax p(ln+1 = | P)
leL

= argmax p(lnt+1 = ll1,l2, ..., In)
leL
where L is the set of all possible locations. This formula re-
quires computing the transition probability from the whole
preceding sequence towards the location we want to calcu-
late. However, in reality, next location is only depend on few
preceding locations.Intuitively, current location has largest
influence the next location. Based on that, we can focus on
most closed preceding locations rather than the whole prefix.

In+1 = argmax p(ln+1 = Ylln—m-1,ln—m—2, .., ln) (1)
leL

where m is called the order of Markov model, i.e. the num-
ber of preceding steps we suppose to have influence on the
current location. Finally, we can compute the destination
based on all previous locations we choose in that trajectory.
In order to make prediction with m-ordered Markov model,
we need to calculate following conditional probability first:

#(Ly', L)

— 2
#(L))

where #L;' denotes the occurrence of L;' observed in tra-

jectory set, and #(Ly', ;) means the times that location [;
is observed right after L.

p(li|Ly') =

4. PERSONAL MARKOV MODEL

Personal Markov Model (PMM) was first proposed in [1].
PMM is a single users trajectory based model. This influ-
enced by that fact that every moving object has its routine
and characteristics. For example, people are not likely to
drive to a grocery 30 or more kilometers away from their
area. Thus, the main focus here is to predict relying on the
individual patterns of each moving object using its own pre-
vious trajectories. for computing, let P(I’) denotes to the
discrete probability of a moving object arriving at location
of I', where I/ is a set of the distinct locations in the train-
ing trajectories, N(I') is the occurrence of the destination ',
and [is the possible prefix of I, then we have:

!/
P(l') — & (3)
e N(1)
Therefore, for the training process, we iteratively train a
variable-order Markov model with order m, where 1 < m <

Nusing the trajectories of a moving object. First, we sat the
prefix set for every moving object using its own trajectories,
and then we computed the probability distribution of the
final location which is the destination. However, data spar-
sity is a problem of this model, and this shows why GMM
is needed.

5. GLOBAL MARKOV MODEL

Global Markov Model (GMM) is a more generalized model
forming collective patterns based on all trajectories [1]. It
cares about all the available trajectories on order to find out
what the global behaviors of all the moving objects is. This
is based on the fact that moving objects are more likely
to share similar movement patterns. For example, people
who are traveling from location A to location B are often
take the same path. Thus, the probability distribution of a
destination of a moving object is relying on the immediately
preceding N locations that the moving object has arrived at,
so we have:

P(l'| <1j,..1; >) = P(I'|S]) (4)

where S¥ is the prefix set. Our training process consisted of
training an order-N GMM in order to then train a variable-
order GMM. Then, we used the longest suffix match method
as an approach to utilize the variable-order GMM for pre-
diction.

6. GROUP-LEVEL MARKOV MODEL

The biggest problem of PMM is data sparsity, we can not
handle new locations for a single user. But as the develop-
ment of positioning techniques and the increasing require-
ment to more accurate prediction, analysis among large area
becomes necessary. GMM, although fixed the problem of
data sparsity, can also suffer performance descent in skewed
data. Therefore, we propose group-level model here, which
can group similar users and make prediction in a higher
level. The method of group-level Markov model is greatly
inspired by the idea of kNN clustering. Here we also divide
the whole problem into two subtasks: prediction part and
grouping part. In prediction part, we employ Markov mod-
el for each group to make predictions for users belong to
this group; In grouping part, we adjust group information
based on posterior probability. Also, we build an iterative
framework to train this model.

6.1 Group method

We group users based on their mobility mode, because
mobility mode is a strong reflection of trip purpose. It is
obvious that a single users may have several trip purposes.
For example, a student may go to school in weekdays and
interest club at weekends. Based on this observation, we
take advantage of soft-grouping[13] technique which allow
users to be classified into more than one group. Assume the
trajectory set contains n different users and we assign these
users into m groups, then the grouping matrix M can be:

P11 p12 ... Pim
M= | P2t P22 .. P2m (5)
Pni Pn2 oo Pnm

where p;;, (1 <7 <n,1 <j < m) denotes the probability of
user ¢ belongs to group j. To make a reasonable grouping,

Locations

destination

o

o

o

8 i

H Predicted

o H Q

o

o

Q

Figure 1: MLP architecture

the following constraints must be obeyed:
dpy=1li=12..n (6)
j=1

When making prediction to user ¢ with probability array
(pi1, pi2y ---s Pim), all groups will provide part of the final
results independently. User k will influence the result in
group j with probability p;; * pi;.

6.2 Iterative framework

To get a well-performed Group-level Markov predictor, we
build an iterative process in which the Markov models and
grouping will be enhanced alternately. The iterative process
contains five steps generally:

e Initialization

Let U be the set of users and G be the set of groups.
VYu € U, randomly generate the initial probability ar-
ray w.r.t 3 o pg(u) = 1, where py(u) denotes the
probability that u belongs to g. Finally we get a prob-
ability matrix P.

Vg € G, learn Markov model M, will all trajectories
and probability matrix and finally get a list of Markov
models M.

e Updating groups
Yu € U, compute the probability it belongs to every
group based on the current Markov model list M and
modify the probability matrix P accordingly to get a
new probability matrix P™¢".

e Updating models
Vg € G, learn Markov models with the updated proba-
bility matrix P and get a new list of models M"™*"

e Iteration
Let P = P"°", M = M"™°".

e Termination
Terminate when models converge. Else return to step
2.

We give detailed steps below: the area of Natural Language
Processing, we come up with a method to transmit ID into
continuous vector. The architecture of our model is showed
in figure 1.

6.2.1 Markov model training and prediction

200

150

Diff

100

50

1 2 3 4 5 6 7 8 9 10

Iteration times

Figure 2: Learning curve

When training Markov model list M with probability ma-
trix P, the Maximum Likelihood Estimation can be rewrit-
ten as:

#(Ly',)"
#(L)v

where py(I;|L77") refers to the conditional probability of I;
as destination given Lj" in group g; # (L', 1;)" is the number
of times that [; as destination with a prefix L;' in trajecto-
ries produced by user u; and # (L')" refers to the number of
times that prefix (L) appears in trajectories produced by
u. It is obvious from this formula that a user uw with larg-
er probability to group g will have greater impact on the
final result of group g. Once known a prefix sequence L,
the candidates chosen by group g is computed by equation
(5). Note the candidate set is allowed to contain more than
one location which is reasonable in real life because several
trajectories produced by one single user may all cover some
popular locations. Models from all groups will provide part
of the final destination prediction according the probability
matrix. Consider making prediction for user ¢ on a prefix
L}}. The prediction result is given in the form of a m-order
array where each element in the array may be a list of can-
didate locations:

C = (pua * C(i),piz ¥ C(2), ..., pim x C(m)) (8)

pe(li|Ly) = Z pg(u)

uelU

(7)

where C(j) refers to the candidate set provided by model j.
Note each candidate provided by model j is also marked with
a probability, this probability is calculated by above formula.
After calculating the prediction array, all locations will be
ranked according to the final probability and top-k locations
will be chosen as the final candidates. It is straightforward
to conclude that, if user ¢ belongs to group j with higher
probability, then the candidate set provided by model j will
have more chance to appear in the final candidate set.

6.2.2 User grouping

Once obtaining the updated Markov models, we modify
grouping parameters accordingly. For every user in U, it-
s probability array is updated so that for every dimendion
g of G, pg(u) is the posterior probability that user u be-
longs to group g. To calculate this posterior probability, we
first need to compute the probability of observing user u in

0.495

I
'S
©

I
»
o
@

Top-10 Accuracy
o
'J> o
~ B
wv (o]

1N
s
ps}

0.465

1 2 3 4 5 6 7 8 9 10
Number of groups

(a) Accuracy under different group numbers

0.495

0.49

0.485

0.48

0.475

Top-10 Accuracy

0.47

0.465

0.46
1 2 3 4 5 6 7 8 9 10

Number of order

(b) Accuracy under different order

Figure 3: Accuracy under different setting

group g. Assume the trajectory set of user u is T, then the
probability of observing u in group g is:

plulg) = [»(tlg) (9)

teTy,

where t is a single trajectory in T, and t = It ,17,....17. p(t|g)
is calculated by (assume the order is 1):

p(tlg) = p(li|g) * p(F |l , g) * .. x (|1} ", 9) (10)

where p(It|g) and p(I{|If™1, g) can be calculated with equa-
tion (2). With Bayes’ theorem, we can derive the posterior
probability that user u belongs to group g as follows:

p(glu) o< p(g)p(ulg) (11)

where p(ul|g) is given by equation (7) and p(g) can be cal-
culated from the previous probability. Therefore we get an
updated probability matrix.

7. MULTI-LAYER PERCEPTRON WITH EM-

BEDDING LAYER

The key issue here ,as we talked about before, is how to
combine nominal ID with numerical location. The idea we
introduce here is inspired by the idea of Word2Vec[6] which
is widely used in Embedding layer (mapping) transmits user
ID into vector and this vector composes the input of MLP
together with locations. The output of MLP is the pre-
dicted destination, which is further compared with the real
destination, and the calculated error is back-propagated to
weight matrix as well as embedding layer to adjust parame-
ters. For embedding layer, the vector for a user is optimized
each time. The working schema can be described as: when
trajectory t produced by user ¢ comes to the model, we first
transmit all locations contained in the prefix of ¢ (this prefix
is randomly generated) into one-hot format and get location
representative L, then we map user ¢ with the i-th mapping
entry in embedding layer to get a k-D vector V;, which rep-
resents this specific user. L and V; form the input of MLP.
The output of MLP is the predicted destination which is
also in one-hot format. Error of this instance is calculated
with the output and real destination, and this error helps to
adjust all weight matrix and V; in embedding layer.

In this model, we do not need to pay extra attention to da-
ta sparsity problem and grouping problem. Any relations
and similarities between users can be modeled automatical-
ly. Also, the expressive nature of MLP helps us to find more
complicated patterns.

8. PERFORMANCE EVALUATION

We present experiments using real transportation data to
evaluate the model. In this section, we first introduce the
data set and experiment parameters, then the results of ex-
periment will be given.

8.1 Data and evaluation method

In this study, we exploit a real vehicle passage data set
which is collected over the traffic surveillance system on a
major metropolitan city. We are provided with 10, 344,058
records from the data center during a period of 31 days.
Those trajectories contains 199 different locations and are
produced by 437 users. Each record contains a vehicle ID
and a location sequence represented by camera IDs. We
first pre-process these data to pick up a random prefix. The
purpose of pre-processing is to simulate real-world situation
in which prediction may be required at any time and any
location. After pre-processing, 746, 790 trajectories are em-
ployed to train our models, and the rest 104, 129 trajectories
are used to test. In order to compare the performance of d-
ifferent models, two kinds of measurements are introduced:
accuracy and average precision. Accuracy refers to the ra-
tion of correctly-predicted locations in all trajectories. That
is:

-1 l 12
accuracy = W * Zp() (12)
where |T”| is the number of trajectories in test set and p(l) is
1 if [is actually the destination and is 0 otherwise. Average
precision is calculated by:

1 p(l)
ap = |T’\ *Z ; (13)

2

where i denotes the length of prefix sequence, and p(l; takes
the value of 1 if the the prediction for this prefix is correct,
and is 0 otherwise.

0.6

0.5
0.4
>
Q
o
5 0.3
Q
Q
<<
0.2
0.1
0
1 2 3 4 5 6 7 8 9 10
Top-k
——PMM ——GMM Group-level MLP

(a) Comparison of accuracy

0.4

035
03 /
0.25

0.2

0.15

Average precision

0.1

0.05

Top-k

——PMM ——GMM

Group-level MLP

(b) Comparison of average precision

Figure 4: Performance comparison

8.2 Parameter setting and performance

In group Markov model, the number of groups vary from
1 to 10 to exploit how the number of groups would impact
the prediction. The number of iteration round we set is 100
which is big enough to see whether the model will converge
or not. We use top-k ranked location to measure the ac-
curacy and average precision of the model, where k ranges
from 1 to 10.
In MLP, we use one-hot method which means every single
location is represented by a 199-dimension vector. Due to its
time-consuming training, we apply it to a small randomly-
generated subset of data and record parameters leading to
best performance. We use ReLu function for hidden layer-
s and softmax for output layer, and cross-entropy error as
penalty function. We adjust the following parameters in ex-
periment: number of hidden layers, number of units in each
hidden layer, vector dimension of embedding layer, as well
as learning rate. We find the best performance is when MLP
has: 1 hidden layer with 78 units, 10-D vector to represent
vehicle ID, and learning rate 0.007. All performance showed
below is under this setting.
The convergence process of Group-level Markov model is
showed in figure 2. X-coordinate represents the iteration
times and Y-coordinate refers to the difference of probabili-
ty matrix between two adjacent iterations. We can see that
the curve drops sharply at the first 3 iterations and almost
hits 0 after 8 iterations, which proves the correctness of our
model from the perspective of convergence.

The influence of group number is then being exploited. We
compare top-10 accuracy under all group numbers respec-
tively. The result is showed in figure 3(a). We can see from
the figure that the best performance occurred when group
number equals to 7. The performance drop slightly when
group number continues increasing. This indicates users in
our data set roughly follow 7 patterns. This is reasonable
in real life because we have limited number of destination-
s given our departure location and all locations we passed
by before current time. Note that mobility patterns which
do not conflict with each other is possible to be classified
into one group. For example, it is reasonable for pattern
1: (A — B) and pattern 2 : (C'— D) to be in the same group

because pattern 1 will not influence the prediction made
with pattern 2, i.e. they do not have locations in common.
The number of orders also has impact on the prediction
accuracy in Markov model. We explore how the accuracy
changes with the number of order under the setting of 7
groups. The result is showed in figure 3(b). We can see
from the figure that the curve almost remains unchanged
after the number of orders increases to 3. It proves that, at
least in this data set, the next location can be largely decided
by previous 3 locations. It also conforms to our knowledge
that a trajectory has direction. However, this number may
change in different data set due to the sample distance. For
example, assume the sample distance of our data set is 2km,
the number is likely to become 6 in a data set with sample
distance 1km.

Then we compare the performance of all models mentioned
before under optimized setting. That’s PMM, GMM, Group-
level Markov model and MLP. We use top-k (k-candidates)
accuracy to compare the performance of each model and the
result is showed in table 1 and figure 4. We can see from
the table and the figure that:

e Accuracy increases in all models as k increases;

e PMM performs the worst because it only considers in-
dividual trajectories and suffers greatly from data s-
parsity;

e Group-level model performs as well as GMM when the
candidate set is small and slightly better when candi-
date set becomes larger. This is because when more
candidates are provided, the assistance of similar users
will improve the accuracy, while in GMM the predic-
tion for minority users may be influenced by other ma-
jority users who share different pattern with prediction
target.

e MLP performs better than PMM but worse than G-
MM and Group-level Markov model. This is because
the relative position in a trajectory is less considered
in MLP. Markov models treat trajectory as an ordered
sequence where the relative position matters, but MLP
treats trajectory as a set and mixes all location togeth-
er. This can be fixed by increase the units in input
layer. For example, if we have a length-10 prefix as

(a) Accuracy of different models

Method top-1 top-2 top-3 top-4 top-5 top-6 top-7 top-8 top-9 top-10
PMM 0.113 0.156 0.171 0.182 0.183 0.183 0.184 0.184 0.184 0.185
GMM 0.245 0.328 0.371 0.411 0.430 0.455 0.465 0.469 0.473 0.476

Group-level 0.243 0.325 0.371 0.412 0.433 0.456 0.468 0.477 0.482 0.491
MLP 0.172 0.274 0.332 0.368 0.392 0.401 0.407 0.412 0.417 0.42
(b) Average precision of different models

Method top-1 top-2 top-3 top-4 top-5 top-6 top-7 top-8 top-9 top-10
PMM 0.113 0.136 0.151 0.164 0.167 0.168 0.168 0.168 0.168 0.169
GMM 0.245 0.296 0.322 0.347 0.349 0.350 0.350 0.351 0.351 0.351

Group-level 0.243 0.293 0.319 0.347 0.350 0.352 0.352 0.353 0.353 0.355
MLP 0.172 0.199 0.214 0.222 0.223 0.225 0.225 0.226 0.226 0.226

Table 1: Performance comparison

input, we can use 10 * 199 = 1990 units in input layer
and every 199 units represent a single location, rather
than sum up those locations and use 199 units only.
However, this will dramatically increase the number of
parameters and cost much longer time to train. An-
other problem here is, because the prefix is randomly
generated (to simulate real-world condition), different
prefix may have different length. We keep this problem
and will make further study to it.

9. CONCLUSION AND FUTURE WORK

In this paper, we proposed a Group-level Markov model

and an MLP architecture with embedding layer. Group-
level Markov model improve Markov model for destination
prediction by introducing the idea of group which takes the
advantage of similar objects to help the prediction. No ex-
ternal similarity measurement is used in Group-level Markov
model, and thus is robust and independent from data dis-
tribution. We also built an iterative framework to train
this model, which contains two part: training an individual
Markov model for each group and classify each user into sev-
eral groups according to its characteristic and the character-
istics of different groups. MLP with embedding layer fixed
the problem of data sparsity and can find the similarities
between users automatically as well as model different rela-
tions and patterns. In MLP, we introduce embedding layer
to transmit nominal ID to continuous vector which forms
the input of MLP together with locations. We also evaluate
our proposed models and two existing models: PMM and G-
MM and showed Group-level Markov model out-performed
other models. We also gave explanation to the experiment
result.
Our future work mainly involves: 1)Optimize MLP to intro-
duce relative position; 2)Find neighborhood relations in our
data set and change our evaluation method to ” distance with
real destination”, rather than ”match or not”; 3) develop
trajectory prediction applications based on best-performed
model.

10. REFERENCES

[1] M. Chen, Y. Liu, and X. Yu. Nlpmm: A next location
predictor with markov modeling. In Pacific-Asia
Conference on Knowledge Discovery and Data Mining,
pages 186-197. Springer, 2014.

[2] M. Chen, Y. Liu, and X. Yu. Predicting next locations
with object clustering and trajectory clustering. In
Pacific-Asia Conference on Knowledge Discovery and
Data Mining, pages 344—-356. Springer, 2015.

[3] M. Chen, X. Yu, and Y. Liu. Mining object similarity
for predicting next locations. Journal of Computer
Science and Technology, 31(4):649-660, 2016.

[4] A. de Brébisson, E. Simon, A. Auvolat, P. Vincent,
and Y. Bengio. Artificial neural networks applied to
taxi destination prediction. arXiv preprint
arXiv:1508.00021, 2015.

[5] H. Gao, J. Tang, X. Hu, and H. Liu. Content-aware
point of interest recommendation on location-based
social networks. In AAAI pages 1721-1727, 2015.

[6] Y. Goldberg and O. Levy. word2vec explained:
Deriving mikolov et al.’s negative-sampling
word-embedding method. arXiv preprint
arXiv:1402.8722, 2014.

[7] J. Krumm and E. Horvitz. Predestination: Inferring
destinations from partial trajectories. In International
Conference on Ubiquitous Computing, pages 243—-260.
Springer, 2006.

[8] A. Monreale, F. Pinelli, R. Trasarti, and F. Giannotti.
Wherenext: a location predictor on trajectory pattern
mining. In Proceedings of the 15th ACM SIGKDD
international conference on Knowledge discovery and
data mining, pages 637-646. ACM, 2009.

[9] A. Neelakantan, J. Shankar, A. Passos, and
A. McCallum. Efficient non-parametric estimation of
multiple embeddings per word in vector space. arXiv
preprint arXiv:1504.06654, 2015.

[10] D. Tiesyte and C. S. Jensen. Similarity-based
prediction of travel times for vehicles traveling on
known routes. In Proceedings of the 16th ACM
SIGSPATIAL international conference on Advances in
geographic information systems, page 14. ACM, 2008.
Q. Wu, M. K. Ng, and Y. Ye. Cotransfer learning
using coupled markov chains with restart. IEEE
Intelligent Systems, 29(4):26-33, 2014.

G. Xue, Z. Li, H. Zhu, and Y. Liu. Traffic-known
urban vehicular route prediction based on partial
mobility patterns. In Parallel and Distributed Systems
(ICPADS), 2009 15th International Conference on,
pages 369-375. IEEE, 2009.

[13] C. Zhang, K. Zhang, Q. Yuan, L. Zhang, T. Hanratty,

[14]

and J. Han. Gmove: Group-level mobility modeling
using geo-tagged social media. In Proceedings of the
22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages
1305-1314. ACM, 2016.

B. D. Ziebart, A. L. Maas, A. K. Dey, and J. A.
Bagnell. Navigate like a cabbie: Probabilistic
reasoning from observed context-aware behavior. In
Proceedings of the 10th international conference on
Ubiquitous computing, pages 322-331. ACM, 2008.

