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Introduction 

Language models are a critical component in many speech and natural language processing 

technologies, such as speech recognition and understanding, voice search, conversational 

interaction and machine translation. Over the last few decades, several advanced language 

modeling ideas have been proposed. Some of these approaches have focused on incorporating 

linguistic information such as syntax and semantics whereas others have focused on fundamental 

modeling and parameter estimation techniques. 

Sequential data prediction is considered by many as a key problem in machine learning and 

artificial intelligence. The goal of statistical language modeling is to predict the next word in textual 

data given context; thus we are dealing with sequential data prediction problem when constructing 

language models. Still, many attempts to obtain such statistical models involve approaches that are 

very specific for language domain - for example, assumption that natural language sentences can 

be described by parse trees, or that we need to consider morphology of words, syntax and 

semantics. Even the most widely used and general models, based on n-gram statistics, assume that 

language consists of sequences of atomic symbols - words - that form sentences, and where the end 

of sentence symbol plays important and very special role. 

I have decided to investigate recurrent neural networks (RNN) for modeling sequential data. RNNs 

have several properties that make them an attractive choice for sequence labelling: they are flexible 

in their use of context information (because they can learn what to store and what to ignore); they 

accept many different types and representations of data; and they can recognize sequential 

patterns in the presence of sequential distortions. 

Recurrent neural network language models (RNNLMs) have recently demonstrated state-of-the-

art performance across a variety of tasks. These networks differ from classical feed-forward neural 

network language models [1, 2, 3, 4, 5] in that they maintain a hidden-layer of neurons with 

recurrent connections to their own previous values. This recurrent property gives a RNNLM the 

potential to model long span dependencies. 
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I report perplexity results on the Penn Treebank data which is one of the most widely used data 

sets for evaluating performance of the statistical language models and recently released 1 billion 

words benchmark dataset which is proposed to be used for measuring progress in statistical 

language modeling. 
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Related work 

N-gram models and feed-forward neural network models are today considered as state of the art. 

Which will be briefly explained here. 

N-GRAM 

The probability of a sequence of symbols (usually words) is computed using a chain rule as 

𝑃(𝑤) =  ∑ 𝑃(𝑤𝑖

𝑁

𝑖=1

 | 𝑤1 … 𝑤𝑖−1) 

The most frequently used language models are based on the n-gram statistics, which are basically 

word co-occurrence frequencies. The maximum likelihood estimate of probability of word A in 

context H is then computed as 

𝑃(𝐴|𝐻) =  
𝐶(𝐻 𝐴)

𝐶(𝐻)
 

Where 𝐶(𝐻 𝐴) is the number of times that the HA sequence of words has occurred in the training 

data. The context H can consist of several words, for the usual trigram models |H| = 2. For H = 0, 

the model is called unigram, and it does not take into account history. 

As many of these probability estimates are going to be zero (for all words that were not seen in the 

training data in a particular context H), smoothing needs to be applied. This works by 

redistributing probabilities between seen and unseen (zero-frequency) events, by exploiting the 

fact that some estimates, mostly those based on single observations, are greatly over-estimated. 

Detailed overview of common smoothing techniques and empirical evaluation can be found in [6] 

The most important factors that influence quality of the resulting n-gram model is the choice of the 

order and of the smoothing technique. 

The most significant advantages of models based on n-gram statistics are speed (probabilities of 

n-grams are stored in precomputed tables), reliability coming from simplicity, and generality 

(models can be applied to any domain or language effortlessly, as long as there exists some training 
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data). N-gram models are today still considered as state of the art not because there are no better 

techniques, but because those better techniques are computationally much more complex, and 

provide just marginal improvements, not critical for success of given application.  

The weak part of n-grams is slow adaptation rate when only limited amount of in-domain data is 

available. The most important weakness is that the number of possible n-grams increases 

exponentially with the length of the context, preventing these models to effectively capture longer 

context patterns. This is especially painful if large amounts of training data are available, as much 

of the patterns from the training data cannot be effectively represented by n-grams and cannot be 

thus discovered during training. The idea of using neural network based LMs is based on this 

observation, and tries to overcome the exponential increase of parameters by sharing parameters 

among similar events, no longer requiring exact match of the history H. 

 

 

ARTIFICIAL NEURAL NETWORKS 

Artificial neural networks (ANNs) were originally developed as mathematical models of the 

information processing capabilities of biological brains [7, 8]. Although it is now clear that ANNs 

bear little resemblance to real biological neurons, they enjoy continuing popularity as pattern 

classifiers. The basic structure of an ANN is a network of small processing units, or nodes, joined 

to each other by weighted connections. In terms of the original biological model, the nodes 

represent neurons, and the connection weights represent the strength of the synapses between the 

neurons. The network is activated by providing an input to some or all of the nodes, and this 

activation then spreads throughout the network along the weighted connections. The electrical 

activity of biological neurons typically follows a series of sharp `spikes', and the activation of an 

ANN node was originally intended to model the average ring rate of these spikes. Many varieties of 

ANNs have appeared over the years, with widely varying properties. One important distinction is 

between ANNs whose connections form cycles, and those whose connections are acyclic. ANNs 

with cycles are referred to as feedback, recursive, or recurrent, neural networks. ANNs without 

cycles are referred to as feed-forward neural networks (FNNs). 
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Neural network based language modeling 

The main advantage of NNLMs over n-grams is that history is no longer seen as exact sequence of 

n-1 words H, but rather as a projection of H into some lower dimensional space. This reduces 

number of parameters in the model that have to be trained, resulting in automatic clustering of 

similar histories. While this might sound the same as the motivation for class based models, the 

main difference is that NNLMs project all words into the same low dimensional space, and there 

can be many degrees of similarity between words.  

The main weak point of these models is very large computational complexity, which usually 

prohibits to train these models on full training set, using the full vocabulary. I will deal with these 

issues in this work by proposing simple and effective speed-up techniques. 

Feed forward neural network based language model 

The original model of feed-forward neural network based language model proposed by Bengio[1] 

as follows: the input of the n-gram NNLM is formed by using a  fixed length history of n-1 words, 

where each of the previous n-1 words is encoded using 1-of-V coding, where V is size of the 

vocabulary. Thus, every word from the vocabulary is associated with a vector with length V, where 

only one value corresponding to the index of given word in the vocabulary is 1 and all other values 

are 0. 

This 1-of-V orthogonal representation of words is projected linearly to a lower dimensional space, 

using a shared matrix P, called also a projection matrix. The matrix P is shared among words at 

different positions in the history, thus the matrix is the same when projecting word wt-1, wt-2 etc. In 

the usual cases, the vocabulary size can be around 50K words, thus for a 5-gram model the input 

layer consists of 200K binary variables, while only 4 of these are set to 1 at any given time, and all 

others are 0. The projection is done sometimes into as little as 30 dimensions, thus for our example, 

the dimensionality of the projected input layer would be 30 * 4 = 120. After the projection layer, a 

hidden layer with non-linear activation function (usually hyperbolic tangent or a logistic sigmoid) 

is used, with a dimensionality of 100-300. An output layer follows, with the size equal to the size 

of full vocabulary. After the network is trained, the output layer of 5-gram NNLM represents 

probability distribution  𝑃(𝑤𝑡  | 𝑤𝑡−4 … 𝑤𝑡−1) 
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The main weak point of these models is considering just the last n-1 words not the whole history 

this is why this model (like n-gram) is still limited to a predetermined number of words as history 

and cannot find more complicated patterns in the whole history for predicting the next word. 

 

Figure 1 .  Feedforward neural network based language model 
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Approach 

In this project recurrent neural network based language models are presented. Although these 

model are computationally more expensive than N-gram models, with some techniques it is 

possible to apply them to state-of-the-art systems efficiently. 

RECURRENT NEURAL NETWORKS 

Recurrent neural networks (RNNs) are a class of artificial neural network architecture that 

inspired by the cyclical connectivity of neurons in the brain uses iterative function loops to store 

information. RNNs have several properties that make them an attractive choice for sequence 

labelling: they are flexible in their use of context information (because they can learn what to store 

and what to ignore); they accept many different types and representations of data; and they can 

recognize sequential patterns in the presence of sequential distortions. However they also have 

several drawbacks that have limited their application to real-world sequence labelling problems. 

RECURRENT NEURAL NETWORK BASED LANGUAGE MODEL 

The main difference between the feed-forward and the recurrent architecture is in representation 

of the history - while for feed-forward NNLM, the history is still just previous several words, for the 

recurrent model, an effective representation of history is learned from the data during training. 

The hidden layer of RNN represents all previous history and not just n-1 previous words, thus the 

model can theoretically represent long context patterns. 

Another important advantage of the recurrent architecture over the feed-forward one is the 

possibility to represent more advanced patterns in the sequential data. For example, patterns that 

rely on words that could have occurred at variable position in the history can be encoded much 

more efficiently with the recurrent architecture - the model can simply remember some specific 

word in the state of the hidden layer, while the feed-forward architecture would need to use 

parameters for each specific position of the word in the history; this not only increases the total 

amount of parameters in the model, but also the number of training examples that have to be seen 

to learn the given pattern. 
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The architecture of RNNLM is shown in Figure 2. The input layer consists of a vector w (t) that 

represents the current word w encoded as 1 of V (thus size of w(t) is equal to the size of the 

vocabulary), and of vector s(t-1) that represents output values in the hidden layer from the 

previous time step. After the network is trained, the output layer y (t) represents 𝑃(𝑤𝑡+1 |𝑤𝑡, 𝑆(𝑡 −

1)). 

 

Figure 2 Recurrent Neural Network language modeling 

 

 

The network is trained by stochastic gradient descent using either usual back-propagation (BP) 

algorithm, or back-propagation through time (BPTT) [9]. The network is represented by input, 

hidden and output layers and corresponding weight matrices – matrices U and W between the 

input and the hidden layer, and matrix V between the hidden and the output layer. Output values 

in the layers are computed as follows: 

𝑠𝑗(𝑡) = 𝑓( ∑ 𝑤𝑖(𝑡) 𝑢𝑗𝑖 + ∑ 𝑠𝑘(𝑡 − 1)𝑤𝑗𝑘

𝑘𝑖

 ) 
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𝑦𝑘(𝑡)=𝑔( ∑ 𝑠𝑗(𝑡 − 1)𝑣𝑘𝑗

𝑗

 ) 

Where f(z) and g(z) are sigmoid and softmax activation functions (the softmax function in the 

output layer is used to ensure that the outputs form a valid probability distribution, i.e. all outputs 

are greater than 0 and their sum is 1): 

𝑓(𝑧) =  
1

1 + 𝑒−𝑧
 ,        𝑔(𝑧𝑚) =  

𝑒𝑧𝑚

∑ 𝑒𝑧𝑘𝑘
 

The output layer y represents a probability distribution of the next word wt+1 given the history. The 

time complexity of one training or test step is proportional to 

O = H * H + H * V = H * (H + V) 

Where H is size of the hidden layer and V is size of the vocabulary. 

LEARNING ALGORITHM 

With the stochastic gradient descent, the weight matrices of the network are updated after 

presenting every example. A cross entropy criterion is used to obtain gradient of an error vector in 

the output layer, which is then back-propagated to the hidden layer, and in case of BPTT through 

the recurrent connections backwards in time. During the training, validation data are used for early 

stopping and to control the learning rate. Training iterates over all training data in several epochs 

before convergence is achieved 

The weight matrices U, V and W are initialized with small random numbers Training of RNN for 

one epoch is performed as follows: 

1. Set time counter t = 0, initialize state of the neurons in the hidden layer s(t) to 0 

2. Increase time counter t by 1 

3. Present at the input layer w(t) the current word wt 

4. Copy the state of the hidden layer s(t1) to the input layer 

5. Perform forward pass as described in the previous section to obtain s(t) and y(t) 
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6. Compute gradient of error e(t) in the output layer 

7. Propagate error back through the neural network and change weights accordingly 

8. If not all training examples were processed, go to step 2 

BACK-PROPAGATION THROUGH TIME 

The idea of Back-Propagation Through Time (BPTT) is simple: a recurrent neural network with 

one hidden layer which is used for N time steps can be seen as a deep feed-forward network with 

N hidden layers (where the hidden layers have the same dimensionality and unfolded recurrent 

weight matrices are identical). This idea has been described in [10], and is illustrated in Figure 3 

Such deep feed-forward network can be trained by the normal gradient descent. Errors are 

propagated from the hidden layer s(t) to the hidden layer from the previous time step s(t1) and the 

recurrent weight matrix (denoted as W in Figure 3 ) is updated. Error propagation is done 

recursively. 

 

Figure 3 : Recurrent neural network unfolded as a deep feed-forward network, here for 3 time steps back in 
time 
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The unfolding can be applied for as many time steps as many training examples were already seen, 

however the error gradients quickly vanish as they get back-propagated in time [11] (in rare cases 

the errors can explode), so several steps of unfolding are sufficient (this is sometimes referred to 

as truncated BPTT). 

 

COMPUTATIONAL COMPLEXITY 

The computational complexity of a basic neural network language model is very high for several 

reasons, and there have been many attempts to deal with almost all of them. The training time of 

N-gram feed-forward neural network language model is proportional to 

𝐼 × 𝑊 ×  ((𝑁 − 1) × 𝐷 × 𝐻 + 𝐻 × 𝑉) 

where I is the number of the training epochs before convergence of the training is achieved, W is 

the number of tokens in the training set, N is the N-gram order, D is the dimensionality of words in 

the low-dimensional space, H is size of the hidden layer and V size of the vocabulary (see Figure 4). 

The (𝑁 − 1) × 𝐷 is equal to the size of the projection layer. 

The recurrent neural network language model has computational complexity: 

𝐼 × 𝑊 ×  (𝐻 × 𝐻 + 𝐻 × 𝑉) 

 

Figure 4 
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It can be seen that for increasing order N, the complexity of the feed-forward architecture increases 

linearly, while it remains constant for the recurrent one (actually, N has no meaning in RNN LM). 

The largest terms in the previous three equations are W, the number of the training words, and V, 

the size of the vocabulary. Typically, W can be in order of millions, and V in hundreds of thousands. 
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Extensions of RNNLMs 

CLASS BASED RNNLM 

The original recurrent neural network language model is very computationally expensive, which 

severely limits its possible application in real world systems. Most modifications that aim to reduce 

the computational complexity attempt to overcome the huge term H * V that corresponds to the 

computation done between the hidden and output layers. This computational bottleneck is the 

same for both feed-forward and for the recurrent architecture. Using reasonably large hidden layer 

such as H = 200 and vocabulary V = 50K, it would take impractically long to train models even on 

data sets with several million words. Moreover, application to speech recognition systems via n-

best list rescoring would be many times slower than real-time. 

A sophisticated approach for reducing the huge term H*V was proposed in [12]. Instead of 

computing probability distribution over all words V or some reduced subset of the most frequent 

words, the probability is estimated for groups of words, and then only for words from a particular 

group that we are interested in. 

 

Figure 5 class based RNN LM 
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Figure 5 illustrates this approach: first, the probability distribution over classes is computed. Then, 

a probability distribution for the words that belong to the specific class are computed. So instead 

of computing V outputs and doing softmax over V elements, only C + V’ outputs have to be 

computed, and the softmax function is applied separately to both C and V’, where C are all the 

classes, and V’ are all words that belong to the particular class. Thus, C is constant and V can be 

variable. 

The computation between the hidden and the output layer changes to computation between the 

hidden and the class layer: 

𝐶𝑚(𝑡) = 𝑔(∑ 𝑠𝑗(𝑡)𝑥𝑚𝑗

𝑗

) 

and the hidden layer and a subset of the output layer: 

𝑦𝑉′(𝑡) = 𝑔(∑ 𝑠𝑗(𝑡)𝑣𝑉′
𝑗

𝑗

 ) 

The probability of word w(t + 1) is then computed as 

𝑃(𝑤𝑡+1|𝑆(𝑡)) =  𝑃(𝑐𝑖|𝑆(𝑡)) 𝑃(𝑤𝑖|𝑐𝑖 , 𝑆(𝑡)) 

Where wi is an index of the predicted word and ci is its class. During training, the weights are 

accessed in the same way as during the forward pass, thus the gradient of the error vector is 

computed for the word part and for the class part, and then is back-propagated back to the hidden 

layer, where gradients are added together. Thus, the hidden layer is trained to predict both the 

distribution over the words and over the classes 

USING DISTRIBUTION REPRESENTATION OF WORDS 

Distributed representations of words in a vector space help learning algorithms to achieve better 

performance in natural language processing tasks by grouping similar words. 

Recently, Mikolov et al. [13] introduced the Skip-gram model, an efficient method for learning high-

quality vector representations of words from large amounts of unstructured text data. Unlike most 

of the previously used neural network architectures for learning word vectors, training of the Skip-
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gram model (see Figure 5) does not involve dense matrix multiplications. This makes the training 

extremely efficient: an optimized single-machine implementation can train on more than 100 

billion words in one day. 

The word representations computed using neural networks are very interesting because the 

learned vectors explicitly encode many linguistic regularities and patterns. Somewhat surprisingly, 

many of these patterns can be represented as linear translations. For example, the result of a vector 

calculation vec(“Madrid”) - vec(“Spain”) + vec(“France”) is closer to vec(“Paris”) than to any other 

word vector [14, 13]. 

 

Figure 6 : The Skip-gram model architecture. The training objective is to learn word vector representations that 
are good at predicting the nearby words. 

 

They made the code for training the word vectors based on their techniques available as an open-

source project word2vec in http://code.google.com/p/word2vec. 

The word2vec tool takes a text corpus as input and produces the word vectors as output. It first 

constructs a vocabulary from the training text data and then learns vector representation of words. 

http://code.google.com/p/word2vec
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The resulting word vector file can be used as features in many natural language processing and 

machine learning applications. 

 

FEATURE AUGMENTED METHOD 

Mikolov et al. [15] extend this basic model of RNN with an additional feature layer f (t) that is 

connected to both the hidden and output layers, as shown in Figure 7. The feature layer represents 

an external input vector that should contain complementary information to the input word vector 

w(t). The external features can be any information source such as part of speech tags, 

morphological information about the current word w(t), or speaker-specific information in the 

context of ASR. 

 

Figure 7 Recurrent neural network based language model, with the additional feature layer f (t) and the 
corresponding weight matrices. 

The distributed representation of words produced by skip-gram model has been used as feature 

vector for this model. The input vector w(t) and the output vector y(t) have dimensionality of the 
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vocabulary. After the network is trained using stochastic gradient descent, the vector y(t) 

represents a probability distribution over words from the vocabulary given the previous word w(t), 

the context vector s(t−1) and the feature vector f (t). 
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Experimental Result  

It is very difficult to objectively compare different language modeling techniques: in practical 

applications, accuracy is sometimes as important as low memory usage and low computational 

complexity. 

In my project, performance of models is reported and compared to other technique on Penn 

Treebank Dataset. I have also tried to get the result of my RNN on 1 billion benchmark but due to 

the lack of time I just manage to get the result on 10% of that data set. Since training RNN is very 

time consuming, the performance of RNN on whole 1-billion benchmark could not be ready before 

the deadline. 

PERPLEXITY 

Evaluation of quality of different language models is usually done by perplexity. The perplexity 

(PPL) of word sequence w is defined as 

𝑃𝑃𝐿 = √∏
1

𝑃(𝑤𝑖|𝑤1…𝑖−1)

𝑘

𝑖=1

𝑘

=  2−
1
𝑘

∑ log2 𝑃(𝑤𝑖|𝑤1…𝑖−1)𝑘
𝑖=1  

PENN TREEBANK DATASET 

One of the most widely used data sets for evaluating performance of the statistical language models 

is the Penn Treebank portion of the WSJ corpus. I used the same standard preprocessing of the data 

as is common in previous research and all words outside the 10K vocabulary are mapped to the 

<unk> token. The Penn Treebank Corpus was divided as follows: sections 0-20 were used as the 

training data (930k tokens), sections 21-22 as the validation data (74k tokens) and sections 23-24 

as the test data (82k tokens). 

1 BILLION WORDS BENCHMARK 

Chelba et. al., propose a new benchmark corpus to be used for measuring progress in statistical 

language modeling. With almost one billion words of training data [18]. This corpus consisted of 
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0.8 billion words which were split into 100 disjoint partitions. Vocabulary size is about 191K 

words. 

The benchmark is available as a code.google.com project at https://code.google.com/p/1-billion-

word-language-modeling-benchmark/; besides the scripts needed to rebuild the training/held-out 

data, it also makes available log-probability values for each word in each of ten held-out data sets, 

for each of the baseline n-gram models. 

 

RESULTS 

The first models are standard n-gram models with Good-Turing (GT) and modified Kneser-Ney 

smoothing (KN) [16]. The usual baseline in many papers is a trigram model with Good-Turing 

smoothing. We can see that substantial gains can be gained by using KN smoothing and also by 

using higher order n-grams. Although the PTB corpus is relatively small, the difference between 

GT3 and KN5 models is large perplexity is reduced from about 165 to 141. On larger data sets, even 

bigger difference can be expected. The rest models in Table 1 consists of neural network language 

models with different architectures. 

There are a feedforward neural network models that was originally proposed by Yoshua Bengio [1] 

- the neural network learns a linear projection of words into a low dimensional space together with 

the final model. 

By changing the topology of the network from a feedforward to a recurrent one, we allow the model 

to form a short context memory that is learned unsupervisedly from the data. The prediction of the 

next word then depends on the previous word and the state of the short context memory. We can 

thus claim that such model can actually cluster entire histories that are in some sense similar. This 

is in contrast to feed-forward neural networks that can effectively cluster only individual words in 

the projection layer, and then it is needed to perform another step to cluster the low dimensional 

representation of several words from the history. If some pattern involves variable position of some 

word in the history, it is not possible to represent such pattern efficiently with a compact 

feedforward network, while this can be accomplished by using a recurrent one. 

https://code.google.com/p/1-billion-word-language-modeling-benchmark/
https://code.google.com/p/1-billion-word-language-modeling-benchmark/
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The recurrent neural network language model that was described in more depth in the previous 

chapter outperforms all other types of language models on the PTB data set [17]. It works similar 

to the feedforward neural network language model, with the main difference being representation 

of the history. While for both feedforward and the recurrent architecture the history is projected 

into a lower dimensional space where clustering of similar events occur, the main difference is that 

feedforward NN projects individual words, and recurrent NN performs clustering of the whole 

histories. This gives the recurrent model ability to compactly describe wider range of patterns in 

the data.  

In this project I have used truncated BPTT and Stochastic gradient descent (SGD) for training the 

RNN models. Error gradients were computed by performing unfolding of the RNN model for 10 

time steps. 

Our initial experiments were performed using RNN models with 150 neurons in hidden layer that 

it took about one week to train. Then For reduction of computational complexity, factorization of 

the output layer using 100 classes has been used. 

I trained additional RNNML models with 150 hidden neurons with distribution representation of 

the words as features, to see the potential of vector representations of words in models and make 

training phase faster. I repeat this using words representation of words from bigger data set to have 

better representation of each word.  

 Next, I trained RNNML models with the same configuration and with additional features that I got 

from skip gram model on our dataset. The results are summarized in Table 1. 
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RESULTS 

MODEL VALID PPL TEST PPL DESCRIPTION 

3-gram, Good-Turing smoothing  165.2  

5-gram, Good-Turing smoothing  162.3  

3-gram, Kneser-Ney smoothing  148.3  

5-gram, Kneser-Ney smoothing  141.2  

Feed forward Neural Network  140.2  

RNN 139.2315 132.2373 12 iter. Each: 7hour 

RNN(100 class) 148.3043 141.5747 19 iter. Each: 30 min 

RNN(50 class) 147.1355 140.0587 19 iter. 

RNN(200 Feature ,100 class) 178.3496 166.2796 15 iter 

RNN(200 Feature google,100 class) 180.3263 173.29 14 iter. 

RNN(100 class, 40 Feature Augmented) 134.7309 128.3221 20 iter. 

RNN(50 class, 40 Feature Augmented) 133.8850 128.6912 17 iter 

RNN(40 Feature Augmented) 118.1850 112.5353 18 iter,, each 12 h 

 

As can be seen, the perplexity is reduced very significantly by using feature augmented method 

RNN. Smaller classes results in more output layer and thus can lead to a higher accuracy, at the 

expense of the training time. 
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You can get the perplexity of your text using the online version of my project in 

http://www.cse.yorku.ca/~rsoltani/cse6412/. Enter your text and find out the perplexity of that 

using RNN with 150 neuron in hidden layer (Figure 8) 

 

Figure 8 Calculating Perplexity 

 

I have used these models to predict the next word of a sequence of words. For this aim I compute 

the word with highest probability in my RNN model given the sequence of words. 

You can see some of the predictions of word for my RNN model with 150 neuron in hidden layer in 

table 2 that </s> means end of line: 

SENTENCE 1ST WORD 
PROBOBILITY 

OF 1ST WORD 

2ND 

WORD 

PROB. OF 

2ND 

WORD 

3RD WORD 
PROB. OF 

3RD WORD 

It is easy to 54.35% </s> 6.99% for 5.70% 

It is N’t 13.87% a 8.46% also 4.25% 

They will be a 6.86% used 5.41% able 5.14% 

I think that 19.13% the 16.84% It 11.51% 

that would 

be the 
first 5.44% lowest 4.33% highest 2.93% 

http://www.cse.yorku.ca/~rsoltani/cse6412/
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You can get the best three words for completing your sentence using the online version of my 

project in http://www.cse.yorku.ca/~rsoltani/cse6412/  in enter your sequence of words and see 

the results using RNN with 150 neuron in hidden layer (Figure 9 ) 

 

Figure 9. Guessing the next word 

 

In 1B-Word Benchmark corpus since my result is just on 10% of that I will not compare it to other 

technique. 

Result on 10% of 1B-Word Benchmark corpus Perplexity 

RNN( 100 class) 214 

http://www.cse.yorku.ca/~rsoltani/cse6412/
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Conclusion  

The goal of this project was to present architectures of language models that are based on artificial 

neural networks. Although these models are computationally more expensive than N-gram models, 

with some techniques it is possible to apply them to state-of-the-art systems efficiently. As we saw, 

Recurrent neural network language models can be successfully trained by using stochastic gradient 

descent and back-propagation through time and Great speedup can be achieved by using simple 

classes in the output layer.  

The main difference between the feed-forward and the recurrent architecture is in representation 

of the history - while for feed-forward NNLM, the history is still just previous several words, for the 

recurrent model, an effective representation of history is learned from the data during training. 

The hidden layer of RNN represents all previous history and not just n-1 previous words, thus the 

model can theoretically represent long context patterns. 

Another important advantage of the recurrent architecture over the feed-forward one is the 

possibility to represent more advanced patterns in the sequential data. 

We also show that using augmented features RNN we can reach good result in terms of accuracy as 

well as speed. 
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Appendix 

SYSTEMS MANUAL 

This project has been written using python and its Theano library developed by a machine learning 

group at the University of Montreal . 

The input data are expected to be in a simple ASCII text format, with a space between words and 

end of line character at end of each sentence. After specifying training data set, a vocabulary is first 

constructed. Note that if one wants to use limited vocabulary (for example for open-vocabulary 

experiments), the text data should be modified outside the toolkit, by first rewriting all words 

outside the vocabulary to <unk> or similar special token. After the vocabulary is learned, the 

training phase starts. Implicitly, it is expected that validation data are provided, to control number 

of training epochs and the learning rate. The model is saved after each completed epoch (or also 

after processing specified amount of words), and the training process can continue if interrupted. 

The parameters for training an RNN model is: 

address  : Address of Data set 

n_hidden : Number of node in hidden layer(150( 

learning_rate : Learning rate for updating weights (0.01) 

n_epochs= : Number of Epoch(10) 

L1_reg=  : L1 regularization(0.00) 

L2_reg=  :L1 regularization(0.00) 

learning_rate_decay: Decreasing rate of learning_rate afer each epoch(0.8) 

activation : actication function of hidden nodes('sigmoid') 

output_type= : actication function of output nodes('softmax')  
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Online Version 

You can also use the online version of the project for testing the RNN with 150 neuron in the hidden 

layer in  http://www.cse.yorku.ca/~rsoltani/cse6412.  

You can get the perplexity of your text using the online version of this project. you can enter your 

text and find out the perplexity of that using RNN with 150 neuron in hidden layer like figure 9: 

 

 

Figure 10 

For predicting the next word of your sequence of word you can use the online version of this 

project. You can enter your word sequence and see the 3 most probable words that could be after 

your word’s sequence. 

 

http://www.cse.yorku.ca/~rsoltani/cse6412
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