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Abstract. Most of classification learning methods aim at the reduction of the 
number of errors. However, in many real-life applications it is misclassification 
cost, which should be minimized. In this paper we are integrating cost-
sensitivity to ELEM2. Our approach is to change the existing system ELEM2 to 
cost sensitive decision rue learning. First, we applied Instance weighting to 
ELEM2. We changed the whole structure of it to fit with the Instance weighting 
method. Then we proposed a new method in its post pruning step, without 
changing the remaining components of ELEM2 i.e., the classification gain and 
significant value are not changed. Finally, the performance of our method is 
compared to that of ELEM2 without any cost methods and ELEM2 with 
instance weighting method. The results show, that our new method is able to 
reduce the misclassification cost much better then with instance weighting. 

 

1. Introduction 

Classification techniques are aimed at building models from predefined 
instance classes based on a training set of data instances with known class 
labels. This model can be used to predict classes of future unclassified data 
instances. There exist many effective methods for building classifiers [3], but in 
most cases the goal is to minimize the number of misclassification errors. 
However, in many real life applications the assumption that all errors are 
equally important is invalid. For example, in medical domain misclassifying an 
ill patient as a healthy one is usually much more harmful than treating a healthy 
patient as an ill one and sending him for additional examinations. In database 
marketing the cost of mailing to a non-respondent is very small, but the cost of 
not mailing to someone who would respond is the entire pro fit lost [4]. 

While most basic classification methods have not been designed to solve 
cost-sensitive problems, two major group of works have been proposed for 
converting these methods in to cost sensitive classifier learners, internal and 



external methods. External methods are general methods that can be used to 
convert any error-based classifiers into cost sensitive ones. These methods treat 
the classifier algorithms as black-boxes without need to have any knowledge of 
the structure of them. So, the internal structure of the classifiers is untouched, 
wrapping a external method around them. Most famous proposed external 
methods are MetaCost[4] and stratification[5.6,7]. On the other hand, Internal 
methods are most commonly used approach, to apply them to any error-based 
classifiers, internal structure of classifiers should be known and need to change 
the whole structure of the classifiers to fit the used internal method. Two major 
internal approaches, instance weighting [4,8,9,10] and post hoc threshold 
adjusting [11,12], have been proposed for converting classifiers into cost-
sensitive ones. 

Although the external methods work fine in some fields, the best approach 
is to modify the internal structure of any classifier to be cost-sensitive. Zhao 
[13] has studied the comparison between two internal methods, instance 
weighting and threshold adjusting and concluded that for continuous 
probability estimates, such as Naive Bayes, logistic regression, and 
backpropagation neural network  post hoc threshold adjusting works fine, but 
for the symbolic classification methods, such as decision trees, decision rule, 
and decision table learners, instance weighting are very suitable for them.  

In our work, we modified the existing system ELEM2 [1], a decision rule 
learning, according to the instance weighting and also produced our own 
approach to build cost-sensitive ELEM2. We then compared the result of both 
and conclude with an important result. 

In the reminder of this paper, we first introduce some relative works done 
in the same field. Next we discuss the instance weighting as one of the internal 
methods and how to modify the ELEM2 to fit the instant weighting method. 
Then we produced our own solution to build Cost-sensitive ELEM2 during 
post-pruning process. Finally, we will end up with experiment results, outcome 
of these results and future works that should be done in this field. 

 

2. Related work 

The process of inductive learning may involve different costs [14] e.g., 
costs of tests (features), costs of cases, costs of errors. In the literature the latter 
kind of costs is the most commonly discussed one. 

Several attempts to incorporate misclassification costs into decision tree or 
decision rule learning were made so far. The first approach was introduced by 



Breiman et al. [15] in CART decision tree learning system. Their method 
consists in modification of the class prior probabilities used in the splitting 
criterion. The cost-based measure is also used for tree pruning. 

In a simpler approach (e.g., [16], [17]) error costs are taken into 
consideration during the pruning phase, but not during the induction phase. In 
such case the pruning procedure has a limited capability to change the structure 
of the classifier obtained by the error-based learning. Consequently, ignoring 
the misclassification cost at the first phase is the main drawback of this 
approach. 

Pazzani et al. [18] introduced three cost-sensitive algorithms for decision 
list induction. Their method was applied to a real telephone network 
troubleshooting problem. 

Ting [19] proposed a modified version of C4.5 using instance-weighting 
for induction of cost-sensitive decision trees. This approach requires the 
conversion of the cost matrix into the cost vector, which may result in poor 
performance in multi-class problems. 

In [4] Domingos presented a method for making an arbitrary classifier 
cost-sensitive by wrapping a cost-minimizing procedure around it. However his 
approach may be computationally inefficient because it requires many runs of 
the basic learning algorithm.  

3. Instance Weighting 

The main idea behind instance weighting is giving instances that belongs 
to classes which has high rate misclassification cost over those belongs to 
classes with low rate misclassification cost. To do so instance weighting 
modifies the weight of an instance proportional to the cost of misclassifying the 
class to which the instance belongs, leaving the sum of all training instance 
weights still equal to the total number of training instances N. The last 
condition is important because there is no reason to alter the size of the training 
set, which is equivalent to the sum of all training instance weights, while the 
individual instance weights are adjusted to reflect the relative importance of 
instances for making future prediction with respect to cost-sensitive 
classification.   

Let C(j) be the cost of misclassifying a class j instance, then the weight of 
a class j instance can be computed as: 
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We modified ELEM2 to create ELEM2IW. First, we needed to initialize 
the training instance weights to w(j). Then we modified the structure of 
ELEM2, so in every equation the probability measure is no longer the count of 
instances, instead it is the sum of their weights. We did this modification in 
significance value function SIG, which measures the degree of relevance of an 
attribute-value pair, Classification gain CG, which measures how much is 
gained by classifying a new example into a class based on the information 
about the probabilities of a set of attribute-value pairs and the class, and rule 
quality measure Q(r), which is used as a criterion for post-pruning and in the 
classification part of ELEM2. 

This modification effectively converts the standard ELEM2 rule induction 
procedure that seeks to minimize the number of errors, regardless of cost, to a 
procedure that seeks to minimize the number of errors with high cost. Note that 
minimizing the later does not guarantee that the total misclassification cost is 
minimized. This is because the number of low cost errors is usually increased 
as a result. The next topic will describe our proposed approach for minimizing 
the overall cost. 

In a classification task of K classes, the misclassification costs can be 
specified in a cost matrix of size K×K. The row of the matrix indicates the 
predicted class, and the column indicates the actual class. The off-diagonal 
entries contain the costs of misclassifications; and on the diagonal lie the costs 
for correct classifications which are zero in this case. 

Let cost(i,j) be the cost of misclassifying an instance belonging to class j 
as belonging to class i. In all cases, cost(i,j) = 0, for i = j. A cost matrix must be 
converted to a cost vector C(j) in order to use Equation (1) for instance-
weighting. In our project, we employ the form of conversion suggested by 
Breiman et al. (1984): 
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4. Our Approach 

The rule induction in ELEM2 depends on the significance measure. The 
value of the significance measure depends on how much a certain attribute 
value pair succeeds to increase the probability of the target class given this 
attribute value pair. This property should be kept. So, the rule generation step is 
kept exactly the same. Instead, the pruning step is modified. The target of the 
modification of pruning step is to generate more general rules for the more 
important classes which have higher misclassification costs by doing more 
pruning. While the inverse is done with the less important classes. As a result, 
the more important class rules have more probability to match with new 
instances. 

The rule quality measure for rule r is defined as: 
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Where, 

 m: is the number of positive examples covered by rule r 
 n: is the number of examples covered by rule r, 
 M: is the total number of positive examples, and 
 N: is the total number of examples in the dataset. 

It can be seen that as more attribute value pairs usually m gets larger and 
in the same time n gets larger too. So, for a certain attribute value pair, the 
value of Q(r) increases if the increase in m is high compared to the increase in 
n. So if we made m to increase, the value of Q(r) increases too allowing more 
pruning. So, we define the modified value of m as: 
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Where w(c) is the weight of class c. The effect of this modification is to 
increase m in proportion to the class weight while keeping it less than or equal 
to n. Then the quality measure of rule r is defined as: 
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It should be noted that we should add the condition NnMmM −+≤′≤  to 
make sure that the ratio doesn’t go to a negative value. 

This modification increases m proportionally to the class weight, which 
allows more pruning for the higher misclassification cost classes. The same 
modified value of Q(r) should be used also to rank the rules in order to make 
the more important class rules have better quality. 

We have changed ELEM2 according to the previous explanations and 
named it ELEM2CS.  

5. Experimental results 

Four measures are used to evaluate the performance of the ELEM2IW and 
ELEM2CS. They are total misclassification costs, average misclassification 
costs, Average accuracy and average number of rules. The first is the most 
important measure in any cost-sensitive classifications. A good cost-sensitive 
classifier will have total misclassification costs as low as possible. Everything 
being equal, a rule induction algorithm is better than the other if it induces 
smaller average number of rules.  
 

We conduct experiments using ten datasets obtained from the UCI 
repository of machine learning databases. The datasets are selected to cover a 
wide variety of different domains with respect to dataset size, the number of 
classes, the number of attributes, and types of attributes. They consist of five 
two-class datasets and five multi-class datasets. 
 

Ten 10-fold cross-validations with post-pruning are carried out in each 
dataset; random cost assignments with the unity condition are used in all 
datasets, where in each non-diagonal entry in the cost matrix an integer 
randomly generated between 1 to 10 is assigned. Three experiments were 
carried out for each dataset with fixed generated cost vector, first with ELEM2, 
second with ELEM2IW, and the third with ELEM2CS. The collected data is 
shown in table (1). 



 

 

Table1. ELEM2, ELEM2IW and ELEM2CS in terms of cost, average cost, average 
accuracy and average no of rules. 

Dataset Cost  
Vector 

 Cost  Average Cost 
Elem2 Elem2IW  Elem2CS Elem2 Elem2IW  Elem2CS 

a [3 2] 2550 2271 1588 0.17 0.15 0.11 
abalone [1 5 1] 5857 5485 2538 1.4 1.31 0.61 

bcdata [3 5] 111 103 92 0.16 0.15 0.13 

ecoli [9 7 1 2 6 1 1 8] 207 222 199 0.61 0.66 0.59 

example2 [5 1] 0 2 3 0 0.01 0.01 

iris [1 1.5 10] 34.5 24.5 14.5 0.23 0.16 0.097 

monks-1 [7 2] 13 18 13 0.1 0.14 0.1 

monks-2 [5 1] 161 247 178 0.95 1.46 1.05 

optdigits 
[10 9 8 7 6 5 4 3 2 

1] 
1370 1366 1508 0.36 0.36 0.39 

wine [1 1.5 5] 32 35 32 0.18 0.2 0.18 

Dataset 
Cost  

Vector 
 Accuracy Average No of rules 

Elem2 Elem2IW  Elem2CS Elem2 Elem2IW  Elem2CS 
a [3 2] 93.82 94.44 95.92 241.8 226.4 244 

abalone [1 5 1] 55.64 55.16 47.67 297.7 344.7 493.9 
bcdata [3 5] 96.04 96.34 96.19 16.2 16.4 12.4 

ecoli [9 7 1 2 6 1 1 8] 83.96 77.42 81.59 29 24.1 27.6 

example2 [5 1] 100 100 100 6.2 6.3 6.2 

iris [1 1.5 10] 96 96.66 97.33 7.3 4.5 8.2 

monks-1 [7 2] 96.8 96.8 96.8 9.4 9.1 9.3 

monks-2 [5 1] 66.25 58 63.24 42 37 41.5 

optdigits 
[10 9 8 7 6 5 4 3 2 

1] 
93.43 93.57 92.13 84.6 84.3 83.8 

wine [1 1.5 5] 94.24 93.72 94.24 7.2 7.2 7.2 

From table 1, it can be seen that the proposed modification works much better 
than instance weighting. The cost always decreases or at least stays the same 
with the exception of the monks-2 and optsdigits datasets where the cost 
increased a little. Instance weighting sometimes achieves a lower 
misclassification costs, but always the gain is little compared to our proposed 
Elem2CS and surprisingly it sometimes gets much worse results as with 
monk2-2 dataset. 



 

 

 

Figure 1 

 

Figure 2 
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Figure 3 

 

 

6. Conclusions 

In this report, a modified version of ELEM2 is presented that handles the case 
of cost sensitive classification. Experimental results showed that the proposed 
modification achieved much better results in respect to minimizing the 
misclassification cost. 
The idea of making more important class rules more general proved to work to 
favor the classification of the more important classes. And it proved to better 
and more robust than instance weighting. 
Although, more research is needed in order to analyze the performance of the 
proposed modification to get more insight about when the algorithm performs 
well and why it fails to decrease the cost with some cases. Also, a comparison 
between the performance of the proposed algorithm and that of the general 
(external) cost sensitive algorithms such as meta-cost is needed. 
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