
Building Cost-Sensitive ELEM2

Ossama Abdel-Hamid and Zahidur Rahman

Department of Computer Science and Engineering,
York University

Toronto, ON M3J1P3, Canada
e-mail:{ossama,zahidur}@cse.yorku.ca

http://www.cse.yorku.ca/{~ossama,~zahidur}

Abstract. Most of classification learning methods aim at the reduction of the
number of errors. However, in many real-life applications it is misclassification
cost, which should be minimized. In this paper we are integrating cost-
sensitivity to ELEM2. Our approach is to change the existing system ELEM2 to
cost sensitive decision rue learning. First, we applied Instance weighting to
ELEM2. We changed the whole structure of it to fit with the Instance weighting
method. Then we proposed a new method in its post pruning step, without
changing the remaining components of ELEM2 i.e., the classification gain and
significant value are not changed. Finally, the performance of our method is
compared to that of ELEM2 without any cost methods and ELEM2 with
instance weighting method. The results show, that our new method is able to
reduce the misclassification cost much better then with instance weighting.

1. Introduction

Classification techniques are aimed at building models from predefined
instance classes based on a training set of data instances with known class
labels. This model can be used to predict classes of future unclassified data
instances. There exist many effective methods for building classifiers [3], but in
most cases the goal is to minimize the number of misclassification errors.
However, in many real life applications the assumption that all errors are
equally important is invalid. For example, in medical domain misclassifying an
ill patient as a healthy one is usually much more harmful than treating a healthy
patient as an ill one and sending him for additional examinations. In database
marketing the cost of mailing to a non-respondent is very small, but the cost of
not mailing to someone who would respond is the entire pro fit lost [4].

While most basic classification methods have not been designed to solve
cost-sensitive problems, two major group of works have been proposed for
converting these methods in to cost sensitive classifier learners, internal and

external methods. External methods are general methods that can be used to
convert any error-based classifiers into cost sensitive ones. These methods treat
the classifier algorithms as black-boxes without need to have any knowledge of
the structure of them. So, the internal structure of the classifiers is untouched,
wrapping a external method around them. Most famous proposed external
methods are MetaCost[4] and stratification[5.6,7]. On the other hand, Internal
methods are most commonly used approach, to apply them to any error-based
classifiers, internal structure of classifiers should be known and need to change
the whole structure of the classifiers to fit the used internal method. Two major
internal approaches, instance weighting [4,8,9,10] and post hoc threshold
adjusting [11,12], have been proposed for converting classifiers into cost-
sensitive ones.

Although the external methods work fine in some fields, the best approach
is to modify the internal structure of any classifier to be cost-sensitive. Zhao
[13] has studied the comparison between two internal methods, instance
weighting and threshold adjusting and concluded that for continuous
probability estimates, such as Naive Bayes, logistic regression, and
backpropagation neural network post hoc threshold adjusting works fine, but
for the symbolic classification methods, such as decision trees, decision rule,
and decision table learners, instance weighting are very suitable for them.

In our work, we modified the existing system ELEM2 [1], a decision rule
learning, according to the instance weighting and also produced our own
approach to build cost-sensitive ELEM2. We then compared the result of both
and conclude with an important result.

In the reminder of this paper, we first introduce some relative works done
in the same field. Next we discuss the instance weighting as one of the internal
methods and how to modify the ELEM2 to fit the instant weighting method.
Then we produced our own solution to build Cost-sensitive ELEM2 during
post-pruning process. Finally, we will end up with experiment results, outcome
of these results and future works that should be done in this field.

2. Related work

The process of inductive learning may involve different costs [14] e.g.,
costs of tests (features), costs of cases, costs of errors. In the literature the latter
kind of costs is the most commonly discussed one.

Several attempts to incorporate misclassification costs into decision tree or
decision rule learning were made so far. The first approach was introduced by

Breiman et al. [15] in CART decision tree learning system. Their method
consists in modification of the class prior probabilities used in the splitting
criterion. The cost-based measure is also used for tree pruning.

In a simpler approach (e.g., [16], [17]) error costs are taken into
consideration during the pruning phase, but not during the induction phase. In
such case the pruning procedure has a limited capability to change the structure
of the classifier obtained by the error-based learning. Consequently, ignoring
the misclassification cost at the first phase is the main drawback of this
approach.

Pazzani et al. [18] introduced three cost-sensitive algorithms for decision
list induction. Their method was applied to a real telephone network
troubleshooting problem.

Ting [19] proposed a modified version of C4.5 using instance-weighting
for induction of cost-sensitive decision trees. This approach requires the
conversion of the cost matrix into the cost vector, which may result in poor
performance in multi-class problems.

In [4] Domingos presented a method for making an arbitrary classifier
cost-sensitive by wrapping a cost-minimizing procedure around it. However his
approach may be computationally inefficient because it requires many runs of
the basic learning algorithm.

3. Instance Weighting

The main idea behind instance weighting is giving instances that belongs
to classes which has high rate misclassification cost over those belongs to
classes with low rate misclassification cost. To do so instance weighting
modifies the weight of an instance proportional to the cost of misclassifying the
class to which the instance belongs, leaving the sum of all training instance
weights still equal to the total number of training instances N. The last
condition is important because there is no reason to alter the size of the training
set, which is equivalent to the sum of all training instance weights, while the
individual instance weights are adjusted to reflect the relative importance of
instances for making future prediction with respect to cost-sensitive
classification.

Let C(j) be the cost of misclassifying a class j instance, then the weight of
a class j instance can be computed as:

∑
=

i iNiC
NjCjw

)(
)()((1)

Such that the sum of all instance weights is

NNjw
j j =∑)(.

For C(j) ≥1, w(j) has the smallest value,
∑

<
i iNiC

N
)(

0 , when C(j)=1; and the

largest value,
∑

=
i iNiC

NjCjw
)(

)()(>1, when C(j)=maxiC(i).

We modified ELEM2 to create ELEM2IW. First, we needed to initialize
the training instance weights to w(j). Then we modified the structure of
ELEM2, so in every equation the probability measure is no longer the count of
instances, instead it is the sum of their weights. We did this modification in
significance value function SIG, which measures the degree of relevance of an
attribute-value pair, Classification gain CG, which measures how much is
gained by classifying a new example into a class based on the information
about the probabilities of a set of attribute-value pairs and the class, and rule
quality measure Q(r), which is used as a criterion for post-pruning and in the
classification part of ELEM2.

This modification effectively converts the standard ELEM2 rule induction
procedure that seeks to minimize the number of errors, regardless of cost, to a
procedure that seeks to minimize the number of errors with high cost. Note that
minimizing the later does not guarantee that the total misclassification cost is
minimized. This is because the number of low cost errors is usually increased
as a result. The next topic will describe our proposed approach for minimizing
the overall cost.

In a classification task of K classes, the misclassification costs can be
specified in a cost matrix of size K×K. The row of the matrix indicates the
predicted class, and the column indicates the actual class. The off-diagonal
entries contain the costs of misclassifications; and on the diagonal lie the costs
for correct classifications which are zero in this case.

Let cost(i,j) be the cost of misclassifying an instance belonging to class j
as belonging to class i. In all cases, cost(i,j) = 0, for i = j. A cost matrix must be
converted to a cost vector C(j) in order to use Equation (1) for instance-
weighting. In our project, we employ the form of conversion suggested by
Breiman et al. (1984):

∑=
I

i
jitjC),(cos)((2)

4. Our Approach

The rule induction in ELEM2 depends on the significance measure. The
value of the significance measure depends on how much a certain attribute
value pair succeeds to increase the probability of the target class given this
attribute value pair. This property should be kept. So, the rule generation step is
kept exactly the same. Instead, the pruning step is modified. The target of the
modification of pruning step is to generate more general rules for the more
important classes which have higher misclassification costs by doing more
pruning. While the inverse is done with the less important classes. As a result,
the more important class rules have more probability to match with new
instances.

The rule quality measure for rule r is defined as:

))|(1)(|(
)|(1)(|(log)(

crPcrP
crPcrPrQ

−¬
¬−

=
 (3)

))((
)(log

mMmn
mMnNm

−−
+−−

=
 (4)

Where,

 m: is the number of positive examples covered by rule r
 n: is the number of examples covered by rule r,
 M: is the total number of positive examples, and
 N: is the total number of examples in the dataset.

It can be seen that as more attribute value pairs usually m gets larger and
in the same time n gets larger too. So, for a certain attribute value pair, the
value of Q(r) increases if the increase in m is high compared to the increase in
n. So if we made m to increase, the value of Q(r) increases too allowing more
pruning. So, we define the modified value of m as:

mnmcw
mcwnm
−+

=′
)(

)(

 (5)

Where w(c) is the weight of class c. The effect of this modification is to
increase m in proportion to the class weight while keeping it less than or equal
to n. Then the quality measure of rule r is defined as:

))((
)(log)(

mMmn
mMnNmrQ
′−′−
′+−−′

=
 (6)

It should be noted that we should add the condition NnMmM −+≤′≤ to
make sure that the ratio doesn’t go to a negative value.

This modification increases m proportionally to the class weight, which
allows more pruning for the higher misclassification cost classes. The same
modified value of Q(r) should be used also to rank the rules in order to make
the more important class rules have better quality.

We have changed ELEM2 according to the previous explanations and
named it ELEM2CS.

5. Experimental results

Four measures are used to evaluate the performance of the ELEM2IW and
ELEM2CS. They are total misclassification costs, average misclassification
costs, Average accuracy and average number of rules. The first is the most
important measure in any cost-sensitive classifications. A good cost-sensitive
classifier will have total misclassification costs as low as possible. Everything
being equal, a rule induction algorithm is better than the other if it induces
smaller average number of rules.

We conduct experiments using ten datasets obtained from the UCI
repository of machine learning databases. The datasets are selected to cover a
wide variety of different domains with respect to dataset size, the number of
classes, the number of attributes, and types of attributes. They consist of five
two-class datasets and five multi-class datasets.

Ten 10-fold cross-validations with post-pruning are carried out in each
dataset; random cost assignments with the unity condition are used in all
datasets, where in each non-diagonal entry in the cost matrix an integer
randomly generated between 1 to 10 is assigned. Three experiments were
carried out for each dataset with fixed generated cost vector, first with ELEM2,
second with ELEM2IW, and the third with ELEM2CS. The collected data is
shown in table (1).

Table1. ELEM2, ELEM2IW and ELEM2CS in terms of cost, average cost, average
accuracy and average no of rules.

Dataset Cost
Vector

 Cost Average Cost
Elem2 Elem2IW Elem2CS Elem2 Elem2IW Elem2CS

a [3 2] 2550 2271 1588 0.17 0.15 0.11
abalone [1 5 1] 5857 5485 2538 1.4 1.31 0.61

bcdata [3 5] 111 103 92 0.16 0.15 0.13

ecoli [9 7 1 2 6 1 1 8] 207 222 199 0.61 0.66 0.59

example2 [5 1] 0 2 3 0 0.01 0.01

iris [1 1.5 10] 34.5 24.5 14.5 0.23 0.16 0.097

monks-1 [7 2] 13 18 13 0.1 0.14 0.1

monks-2 [5 1] 161 247 178 0.95 1.46 1.05

optdigits
[10 9 8 7 6 5 4 3 2

1]
1370 1366 1508 0.36 0.36 0.39

wine [1 1.5 5] 32 35 32 0.18 0.2 0.18

Dataset
Cost

Vector
 Accuracy Average No of rules

Elem2 Elem2IW Elem2CS Elem2 Elem2IW Elem2CS
a [3 2] 93.82 94.44 95.92 241.8 226.4 244

abalone [1 5 1] 55.64 55.16 47.67 297.7 344.7 493.9
bcdata [3 5] 96.04 96.34 96.19 16.2 16.4 12.4

ecoli [9 7 1 2 6 1 1 8] 83.96 77.42 81.59 29 24.1 27.6

example2 [5 1] 100 100 100 6.2 6.3 6.2

iris [1 1.5 10] 96 96.66 97.33 7.3 4.5 8.2

monks-1 [7 2] 96.8 96.8 96.8 9.4 9.1 9.3

monks-2 [5 1] 66.25 58 63.24 42 37 41.5

optdigits
[10 9 8 7 6 5 4 3 2

1]
93.43 93.57 92.13 84.6 84.3 83.8

wine [1 1.5 5] 94.24 93.72 94.24 7.2 7.2 7.2

From table 1, it can be seen that the proposed modification works much better
than instance weighting. The cost always decreases or at least stays the same
with the exception of the monks-2 and optsdigits datasets where the cost
increased a little. Instance weighting sometimes achieves a lower
misclassification costs, but always the gain is little compared to our proposed
Elem2CS and surprisingly it sometimes gets much worse results as with
monk2-2 dataset.

Figure 1

Figure 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

A
ve

ra
ge

 c
os

t
Average cost in ELEM2, ELEM2IW and ELEM2CS

Elem2

Elem2IW

Elem2CS

0

20

40

60

80

100

120

A
ve

ra
ge

 a
cc

ur
ac

y

Average accuracy in ELEM2, ELEM2IW and ELEM2CS

Elem2

Elem2IW

Elem2CS

Figure 3

6. Conclusions

In this report, a modified version of ELEM2 is presented that handles the case
of cost sensitive classification. Experimental results showed that the proposed
modification achieved much better results in respect to minimizing the
misclassification cost.
The idea of making more important class rules more general proved to work to
favor the classification of the more important classes. And it proved to better
and more robust than instance weighting.
Although, more research is needed in order to analyze the performance of the
proposed modification to get more insight about when the algorithm performs
well and why it fails to decrease the cost with some cases. Also, a comparison
between the performance of the proposed algorithm and that of the general
(external) cost sensitive algorithms such as meta-cost is needed.

0

100

200

300

400

500

600

A
ve

ra
ge

 n
o

of
 r

ul
es

Average no of rules in ELEM2, ELEM2IW and ELEM2CS

Elem2

Elem2IW

Elem2CS

References

1. An, A. Learning Classification Rules from Data, International Journal of Computers
and Mathematics with Applications, Vol.45, No.4-5, pp.737-748, 2003.

2. Kwedlo,W.,Kretowski, M.: An Evolutionary Algorithm for Cost-Sensitive Decision
Rule Learning, ECML 2001, LNAI 2167, pp. 288-299,2001.

3. Michie, D., Spiegelhalter, D.J., Taylor, C.C.: Machine Learning, Neural and Statistical
Classification. Ellis Horwood Ltd. (1994) .

4. Domingos, P.: MetaCost: A general method for making classifiers cost-sensitive. In
Proc. of Int. Conf. on Knowledge Discovery and Data Mining, KDD’99. ACM Press
(1999) 155-164.

5. L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and
Regression Trees. Wadsworth, Belmont, CA, 1984.

6. P. Chan and S. Stolfo. Toward scalable learning with non-uniform class and cost
distributions. Proc. 4th Intl. Conf. on Knowledge Discovery and Data Mining, pp. 164-
168, New York, NY, 1998.

7. F. Provost, T. Fawcett, and R. Kohavi. The case against accuracy estimation for
comparing induction algorithms. Proc. 15th Intl. Conf. on Machine Learning, pp. 445-
453, Madison, WI, 1998.

8. Margineantu D (2002) Class probability estimation and cost-sensitive classification
decisions. In: Proceedings of the 13th European conference on machine learning
(ECML), Helsinki, Finland, pp 270–281

9. Ting KM (2002) An instance-weighting method to induce cost-sensitive trees. IEEE
Trans Knowl Data Eng 14(3): 659–665

10. Zadrozny B, Langford J, Abe N (2003) Cost-sensitive learning by cost-proportionate
example weighting. In: Proceedings of the 3rd IEEE international conference on data
mining (ICDM), Melbourne, Florida, pp 435–442

11. Afifi AA, Clark V (1996) Computer-aided multivariate analysis, 3rd edn. Chapman &
Hall, London.

12. Sinha AP, May JH (2005) Evaluating and tuning predictive data mining models using
receiver operating characteristic curves. J Manage Inf Syst 21(3): 249–280

13.Zhao, Huimin: Instance weighting versus threshold adjusting for cost-sensitive
classification.

14. Turney, P.: Types of cost in inductive concept learning. In Proc. of ICML'2000
Workshop on Cost-Sensitive Learning. Stanford, CA (2000).

15. Breiman, L., Friedman, R.A., Olshen, R., Stone, C.J.: Classification and Regression
Trees. Wadsworth (1984).

16. Bradford, J.P., Kunz, C., Kohavi, R., Brunk, C., Brodley, C.E.: Pruning decision
trees with misclassi_cation costs. In Proc. of the Tenth European Conf. on Machine
Learning. Springer Verlag (1998) 131-136.

17. Knoll, U., Nakhaeizadeh, G., Tausend, B.: Cost-sensitive pruning of decision trees.
In Proc. of the 8th European Conf. on Machine Learning. Springer LNCS 784 (1994)
383-386.
18. M. Pazzani C. Merz P. Murphy K. Ali T. Hume and C. Brunk, “Reducing
Misclassification Costs, Proc. 11th Int'l Conf. Machine Learning, pp. 217-225, 1994.

19. Ting, K.M.: Inducing cost-sensitive trees via instance weighting. In Principles of Data
Mining and Knowledge Discovery. 2nd European Symposium PKDD'98. Springer LNCS
1510 (1998) 139-147.

