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Abstract—In this paper, we conducted an experiment to predict 
file-level bugs using processed data metrics from software 
repositories. We compared three classification methods and four 
set of attributes on four Java-based projects. We found that 
balanced data can improve accuracy as well as recall of buggy file. 
Also, we found that using default configuration of logistic 
regression, recall of buggy file was 47.3% better in Weka than 
that in RapidMiner, 19.29% better than R. The model of cross 
project prediction performed poor than the model not crossed. 
However, attribute selection and resampling were not able to 
make the cross project model perform better. 

Index Terms— Bug, Data Mining, classification.  

I. INTRODUCTION 

In modern software development procedure, there are 
mainly four steps: coding, testing, release and bug-fixing. In 
the first step, software developers construct functions of the 
project. Then these pieces of code are reviewed and handed to 
testing specialists. After testing phase, the new version is 
released. Then there are bug reports reported by users. After 
receiving the reports, project managers assign those bugs to 
specialists to do bug fixing. 

For a new version, every project manager wants to make it 
less buggy as possible beforehand. And if one knows whether a 
file is more likely to be buggy or not, one can pay more or less 
attention to that file. Thus, we can save lots of effort for testing 
phase and make the software more robust. 

This procedure is called bug prediction. There are already 
lots of studies focusing on this field. In a word, bug prediction 
is to predict a file is buggy or not by using a set of attributes of 
this file. For example, it could be lines of code (LOC), number 
of methods, etc. Furthermore, there are also some classification 
methods which could predict the severe level of those bugs, 
like critical bugs or trivial bugs. 

In this paper, we tried to solve these four research questions. 
RQ1: Given different sets of attributes, how will the 

performance vary between different classification methods? 
RQ2: How will the performance vary if we resample the 

training data (since most data in bug prediction is skewed)? 
RQ3: How will the performance vary when we do cross 

project validation? 
RQ4: How will the performance vary if we used three 

different implementations of these methods? 

RQ5: Can we achieve better results of cross project 
prediction by attribute selection? 

For the first question, in bug prediction, there are many 
attributes which can be used. In this paper, we used four 
different sets of attributes, which are bug metrics, CK-OO 
metrics, churn of CK-OO metrics and entropy of CK-OO 
metrics.  

Bug metrics is sets of attribute which indicates previous 
defects. CK represents Chi- damber & Kemerer suite [2] and 
OO represents object oriented metrics. Many bug prediction 
approaches are based on these metrics. The churn of metrics is 
used by Nikira et al. [4]. Hassan predicted defects using the 
entropy (or complexity) of code changes [3]. 

We compared three different classification methods as well, 
which are random forest [5], logistic regression [6] and 
decision tree. All of them are mature classification methods. 

For the second question, most files do not tend to be buggy 
based on what we found. This leads to skewed data. Skewed 
dataset may lead to high accuracy but often low recall for the 
minority class (e.g. buggy class in this study). So we used the 
resampling method in Weka to preprocess the data and do the 
exact same experiment as we do for RQ1 to see the effect of 
balancing training data. 

For the third question, usually each project needs to be 
predicted using the model trained on its own dataset. What if 
we use the same model to predict every other project? This test 
procedure is called cross-project validation. We will both do 
cross project validation with resampling and without it. Then 
we compare the performance with the results from RQ1 and 
RQ2. 

There are many data mining tools that implemented all 
kinds of classification tools, for example, R, Weka and 
RapidMiner, etc. Although the theoretical basis of these 
classification methods are the same, the difference of 
implementation may impact the performance. We chose 
logistic regression to test. 

The last question is about attribute selection. We selected 
one set of attribute to pick up some important attribute to do 
prediction to see the performance variance. 

The rest of the paper are organized as follow: part two 
introduces the related work done by previous studies; part three 
introduces the approach we used in this study, describes the 
procedure in general and illustrates examples; part four 



introduces experiment in detail and analyzes the results; part 
five gives the conclusion; part six gives the reference and part 
seven is appendixes. 

II. RELATED WORK 

Defect prediction played an important role in modern 
software development process. Therefore there are many bug 
prediction methods. D’Ambros et al. [1] provided a benchmark 
to evaluate defect prediction. 

Bug prediction is usually file level, thus attributes in file 
level are needed.   

One of the famous attribute set used is Chidamber and 
Kemerer (CK) metrics suite [2]. There is also an additional set 
of attributes called object-oriented metrics. 

Hassan introduced the concept of entropy of changes, a 
measure of the complexity of code changes [3]. Entropy was 
compared to the amount of changes and the amount of previous 
bugs. 

D’Ambros et al. [1] also introduced attribute sets of bug 
metrics, which contained bug categories of: all bugs, non trivial 
bugs (severity>trivial), major bugs (severity>major), critical 
bugs (critical or blocker severity) and high priority bugs 
(priority>default). 

Nikora et al. [4] used churn of CK and OO metrics to 
predict post release defects. They sampled the history of source 
code every two weeks and calculated the deltas of source code. 

III. APPROACHES 

A. Description of Method 

In this experiment, we mainly did four types of experiments 
for five research questions. 

Firstly, we compared three classification methods using 
four sets of metrics on four projects. The four projects are 
eclipse, lucene, mylyn and pde which are all Java-based. The 
four sets of metrics are single version CK/OO metrics, bug 
metrics, churn metrics and entropy metrics. The details of 
calculation for these metrics were introduced in [1]. We put 
these four sets of dataset into Weka and do a ten-fold validation. 

Secondly, having found that dataset was skewed, we 
resampled the raw data. We arbitrary made the ratio between 
not buggy and buggy 0.6. After resampling, we trained the 
model using three classification methods then used the origin 
data as test data. 

Thirdly, we randomly picked lucene project to do cross-
project validation. We used the same metrics (e.g bug metrics) 
in one project (lucene) to train a model and predict using the 
same metrics in other projects (eclipse, mylyn and pde) and all 
three kinds of classification methods. We also compared the 
performance between cross-project prediction and original ones 
using resampled data. 

Fourthly, for Random Forest and Logistic Regression, there 
are two implementation packages in Weka, R and RapidMiner. 
We used results from the third experiment to compare with R. 
By that case, we used sample data in R and tried to see if there 
were any differences between two implementations. 

At last, we chose CK-OO of 4 projects to do attribute 
selection and LOG as classification method in order to see if 
attribute selection could have a significant improvement. 

B. Example illustration 

First we preprocessed the data. In order to be general, we 
only made two classes, buggy or not buggy. When we put the 
data into Weka, it can be seen in Figure 1. We have 5 attributes: 
number of bugs found until, number of nontrivial bugs found 
until, number of major bugs found until, number of critical 
bugs found unitil, number of high priority bugs found until.  

 
Figure 1. Put data in Weka 

Then we applied three classification methods on it using 
ten-fold validation. Figure 2 shows the results of random forest 
classification. 

 
Figure 2. Running Result 

We recorded the recall of class T, the classification accurcy 
in a worksheet file. Then we used statistical analysis to analyze 
the results. 

IV. EXPERIMENT RESULTS 

A. Description of the Experiments 

For the experiments, we put the processed data into Weka, 
and for each project, we used three classification methods: 



random forest, logistic regression and decision tree on four sets 
of metrics. 

B. Results and Discussion 

RQ1: Given different sets of attributes, how will the 
performance vary between different classification methods? 

For the evaluation results of different classification methods, 
it can be seen in Figure 3. 

As we can see, logistic regression had the highest accuracy 
(87.21%) and random forest had the highest recall of True 
value (22.54%). 

The effect of classification methods is not statistical 
significant with p > 0.05. And the effect of sets of attributes is 
not statistical significant with p > 0.05 as well. 

 
Figure 3. Accuracy and recall of each classification method 

For the evaluation of different sets of attributes, the result 
can be seen in Figure 4. 

 
Figure 4. Accuracy and recall of each set of attributes 

From the results we can see, although all the accuracy is 
high in the tables above, the recall is very low. In real life, the 
software development manager will pay more attention to the 
situation of predicting right the bugs. So we picked the recall of 
class buggy to evluate. This low recall maybe due to the 
skewness of the dataset. For example, in the dataset of lucene, 
the not buggy class has 627 instances while buggy has only 64 
instances. So we consider resampling the data in order to gain 
high recall.  

RQ2: How will the performance vary if we balance the 
training data (since most data in bug prediction is skewed)? 

Firstly we tried different ratio of resampling the data. By 
using the resampled data as training data and the original data 
as testing data, we chose 0.6 because the accuracy dropped 
when the ratio went higher. 

As it can be seen in Figure 5, the accuracy did not vary 
remarkably. The highest mean accuracy came from the RF 
method, which was 90.20%, and the accuracy of DT and LOG 
were 87.02% and 84.39% respectively. Not surprisingly, the 
effect of resampling on the classification accuracy of these 
classification methods was significant (p < .005). Using LSD 
method, we found that the accuracy of RF was significantly 
better than the accuracy of LOG and DT.  

 

 
Figure 5. Accuracy of each classification method  

The average recall of “buggy” of each method increased at 
least 142%. The recall of RF was the highest which was 0.82, 
and the lowest was 0.47 from LOG. Besides, the difference 
between recall of using original data and using resampled data 
as training data was significant (p < 0.05). See Figure 6.    

 
Figure 6. Recall of each classification method  

For skewed dataset, classification methods could fail to 
classify the minority although the accuracy could be high, 
wheras the class with low occurrence sometimes was more 
important.  

In bug prediction, actually the cost of misclasification was 
hard to define. For example, if a class was buggy but was 
predicted as not buggy, the influence of the bug(s) in the file 
would only be revealed after the software was released. While 
if a file contained no bug but was predicted as buggy, 



developers might take more effort because they would try to 
find bugs in a class which did not have bug. As a result, 
developers would review or test the file more times to varify if 
the bugs were covert.  

So in the following sections, we considerd accuarcy as the 
first evaluation critiron. If the accuarcy among different 
methods or different metrics was not significant, we would 
compare the recall of “buggy” (denoted as True) because bugs 
would have a higher chance to be fixed as long as the file 
which contained bugs was classified as “buggy”, and files 
labeled with “buggy” were relatively hard to be classified. 

In terms of set of attributes, the mean accuracy of CK-OO 
was 89.72% which was the highest and the lowest mean 
accuracy came from bug-metrics (83.80%). See Figure 7. The 
difference of these set of attributes were statistically significant 
(p < .05).  

 
Figure 7. Accuracy using each set of attributes 

Using LSD method, we found that the accuracy of ck-oo 
method was significantly better than those of bug-metrics and 
entropy. Though the accuracy of Churn was significant better 
than that of Bug-metrics, the difference among it and Entropy 
was not significant.  

Besides, the difference of recall among different methods 
was not significant (p > .05). 

From these, we concluded that using metrics directly 
related to code such as lines of code or changes of lines of code 
could achieve the best result, whereas predicting bugs based on 
previous defects (Bug-metrics) was not reliable: bugs didn’t 
have the Matthew effect. 

RQ3: How will the performance vary when we do cross-
project validation? 

First part: We then did cross-project validation. We 
arbitrary trained the model from lucene project without 
resampling. 

In this analysis, we ignore effect of set of attributes. The 
results can be seen in Figure 8. 

 
Figure 8. Accuracy and recall of each classification method 

The mean accuracy of three methods are 83.81%, 82.56% 
and 83.57%. And the effects of cross-project validation on all 
of three methods are not statistically siginificant. This may be 
also due to the skewness of the dataset. 

It could be seen that for random forest and decision tree 
classification methods, the effect of cross-project validation is 
not statistical significant with t-value > 0.05. The mean recall 
for these two methds are 24.22% and 22.26%. For logistical 
regression, the effect of cross-project validation is statistical 
significant with t-value = 0.004. The recall of class buggy is 
29.97%, in comparison with 19.36% before. 

Then we resampled the data, using logistic regression as the 
classification methods to do the cross-project validation. The 
results can be seen in the Figure 9. 

 
Figure 9. Accuracy and recall using cross-project and non-cross-project 

The original mean accuracy for logistic regression is 84.39%, 
while cross-project mean accuarcy is 77.27%. The effect of 
cross-project is significant with t-value =0.001. This means that 
the accuracy is lower by doing cross-project prediction. 

And for recall, the origin mean value is 46.98% and the 
cross-project mean value is 48.06%. However, the effect of 
cross-project is not statistical significant with t-value > 0.05. 

This result means that cross-project prediction is not as good 
as the origin ones since the accuracy dropped and no 
improvements on recall. 

RQ4: How will the performance vary if we used three 
different implementation of these methods? 



We picked the LOG method as classification method, the 
resampled data set of eclipse as training data set and the 
original data set of eclipse as testing data set for the purpose of 
evaluation.  

Because the options provided in the configuration of LOG 
in these three tools were different (for example RapidMiner can 
set kernel type but Weka can’t), we used the default 
configuration to evaluate these tools.  

As it shown in Figure 10, the accuracy varied slightly 
among three tools, and R had the highest mean accuracy. But 
the difference was not significant (p > .05). Although it was not 
significant different, the p value was quite close to the 
threshold which was 0.053.  

 
Figure 10. Accuracy using each set of attributes 

In contrast, the difference of recall was significant (p < 
0.01). As can be seen in Figure 11, LOG in Weka had the 
highest recall for each set of attributes, and LOG in 
RapidMiner had the lowest recall for each set of attributes. The 
mean recall for LOG in Weka was 0.61, and the mean recall for 
R and RapidMiner was 0.51 and 0.41 respectively.  

 
Figure 11. Recall using each set of attributes 

The classification results could be different because of 
different implementations and different configurations. Weka 
provided the least flexibility of setting parameters of LOG, but 
it had the highest accuracy and recall. R as a script language 
offered much more options, and could reach considerable 
accuracy with default options. But in terms of user-friendly, R 
was not as good as Weka and RapidMiner. Besides, because 
the dataset was relatively small, the execution speed of all three 
tools were fast. 

RQ5: Can we achieve better results of cross project 
prediction by attribute selection? 

Based on the previous sections, we chose CK-OO of 4 
projects to do attribute selection and LOG as classification 
method in order to see if attribute selection could have a 
significant improvement. 

We ranked the attributes in CK-OO by Chi-square method 
in Weka for each project, and selected 8 attributes based on the 
average rank of the attributes. See Table 1.  

Table 1. Rank of each attribute 

eclipse lucene mylyn pde average rank

rfc  3 6 3 1 3.25

fanOut  4 5 1 3 3.25

cbo  5 1 4 6 4

numberOfLinesOfCode  2 8 5 2 4.25

wmc  1 7 6 4 4.5

numberOfMethods  6 2 10 8 6.5

lcom  7 3 9 9 7

numberOfPrivateMethods  9 15 2 5 7.75  
We selected the CK-OO from Lucene as training dataset 

because this was the largest dataset. However, both the 
differences of accuracy and recall between before the selection 
and after the selection were not significant (p > .05). 

V. CONLUSIONS 

In this paper, we mined the relationship between bugs and 
bug repositories. We did bug prediction on four java-based 
projects using four sets of attributes and three classification 
methods. 

We mainly answered five research questions.  
First of all, we found that the effects of sets of attributes 

and classification methods were not statistically significant on 
accuracy of prediction and the recall of buggy class.  

Then we balanced the dataset, ran the same experiment 
again, the effect of resampling is significant in accuracy and 
recall. Both accuracy and recall are higher than the original 
ones.  

Then we ran cross project prediction on original data, there 
was no significant difference between them. After resampling, 
we ran the cross project prediction using logistic regression 
again, the accuracy dropped while recall remained no 
significant difference.  

For different implementation of logistic regression in R, 
Weka and RapidMiner, the effect on accuracy was not 
significant different while Weka accomplished the highest 
value of recall. 

At last, we did attribute selection of CK-OO metrics to do 
cross project prediction, both the differences of accuracy and 
recall between before the selection and after the selection were 
not significant. 
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