
Mining the Relationship between Bugs and Software
Repositories

Boyuan Chen
 Dept. of Computer Science and Engineering

York University
Toronto, Canada

chenfsd@yorku.ca

Ruoyu Gao
Dept. of Computer Science and Engineering

York University
Toronto, Canada

rgao@cse.yorku.ca

Abstract—In this paper, we conducted an experiment to predict
file-level bugs using processed data metrics from software
repositories. We compared three classification methods and four
set of attributes on four Java-based projects. We found that
balanced data can improve accuracy as well as recall of buggy file.
Also, we found that using default configuration of logistic
regression, recall of buggy file was 47.3% better in Weka than
that in RapidMiner, 19.29% better than R. The model of cross
project prediction performed poor than the model not crossed.
However, attribute selection and resampling were not able to
make the cross project model perform better.

Index Terms— Bug, Data Mining, classification.

I. INTRODUCTION

In modern software development procedure, there are
mainly four steps: coding, testing, release and bug-fixing. In
the first step, software developers construct functions of the
project. Then these pieces of code are reviewed and handed to
testing specialists. After testing phase, the new version is
released. Then there are bug reports reported by users. After
receiving the reports, project managers assign those bugs to
specialists to do bug fixing.

For a new version, every project manager wants to make it
less buggy as possible beforehand. And if one knows whether a
file is more likely to be buggy or not, one can pay more or less
attention to that file. Thus, we can save lots of effort for testing
phase and make the software more robust.

This procedure is called bug prediction. There are already
lots of studies focusing on this field. In a word, bug prediction
is to predict a file is buggy or not by using a set of attributes of
this file. For example, it could be lines of code (LOC), number
of methods, etc. Furthermore, there are also some classification
methods which could predict the severe level of those bugs,
like critical bugs or trivial bugs.

In this paper, we tried to solve these four research questions.
RQ1: Given different sets of attributes, how will the

performance vary between different classification methods?
RQ2: How will the performance vary if we resample the

training data (since most data in bug prediction is skewed)?
RQ3: How will the performance vary when we do cross

project validation?
RQ4: How will the performance vary if we used three

different implementations of these methods?

RQ5: Can we achieve better results of cross project
prediction by attribute selection?

For the first question, in bug prediction, there are many
attributes which can be used. In this paper, we used four
different sets of attributes, which are bug metrics, CK-OO
metrics, churn of CK-OO metrics and entropy of CK-OO
metrics.

Bug metrics is sets of attribute which indicates previous
defects. CK represents Chi- damber & Kemerer suite [2] and
OO represents object oriented metrics. Many bug prediction
approaches are based on these metrics. The churn of metrics is
used by Nikira et al. [4]. Hassan predicted defects using the
entropy (or complexity) of code changes [3].

We compared three different classification methods as well,
which are random forest [5], logistic regression [6] and
decision tree. All of them are mature classification methods.

For the second question, most files do not tend to be buggy
based on what we found. This leads to skewed data. Skewed
dataset may lead to high accuracy but often low recall for the
minority class (e.g. buggy class in this study). So we used the
resampling method in Weka to preprocess the data and do the
exact same experiment as we do for RQ1 to see the effect of
balancing training data.

For the third question, usually each project needs to be
predicted using the model trained on its own dataset. What if
we use the same model to predict every other project? This test
procedure is called cross-project validation. We will both do
cross project validation with resampling and without it. Then
we compare the performance with the results from RQ1 and
RQ2.

There are many data mining tools that implemented all
kinds of classification tools, for example, R, Weka and
RapidMiner, etc. Although the theoretical basis of these
classification methods are the same, the difference of
implementation may impact the performance. We chose
logistic regression to test.

The last question is about attribute selection. We selected
one set of attribute to pick up some important attribute to do
prediction to see the performance variance.

The rest of the paper are organized as follow: part two
introduces the related work done by previous studies; part three
introduces the approach we used in this study, describes the
procedure in general and illustrates examples; part four

introduces experiment in detail and analyzes the results; part
five gives the conclusion; part six gives the reference and part
seven is appendixes.

II. RELATED WORK

Defect prediction played an important role in modern
software development process. Therefore there are many bug
prediction methods. D’Ambros et al. [1] provided a benchmark
to evaluate defect prediction.

Bug prediction is usually file level, thus attributes in file
level are needed.

One of the famous attribute set used is Chidamber and
Kemerer (CK) metrics suite [2]. There is also an additional set
of attributes called object-oriented metrics.

Hassan introduced the concept of entropy of changes, a
measure of the complexity of code changes [3]. Entropy was
compared to the amount of changes and the amount of previous
bugs.

D’Ambros et al. [1] also introduced attribute sets of bug
metrics, which contained bug categories of: all bugs, non trivial
bugs (severity>trivial), major bugs (severity>major), critical
bugs (critical or blocker severity) and high priority bugs
(priority>default).

Nikora et al. [4] used churn of CK and OO metrics to
predict post release defects. They sampled the history of source
code every two weeks and calculated the deltas of source code.

III. APPROACHES

A. Description of Method

In this experiment, we mainly did four types of experiments
for five research questions.

Firstly, we compared three classification methods using
four sets of metrics on four projects. The four projects are
eclipse, lucene, mylyn and pde which are all Java-based. The
four sets of metrics are single version CK/OO metrics, bug
metrics, churn metrics and entropy metrics. The details of
calculation for these metrics were introduced in [1]. We put
these four sets of dataset into Weka and do a ten-fold validation.

Secondly, having found that dataset was skewed, we
resampled the raw data. We arbitrary made the ratio between
not buggy and buggy 0.6. After resampling, we trained the
model using three classification methods then used the origin
data as test data.

Thirdly, we randomly picked lucene project to do cross-
project validation. We used the same metrics (e.g bug metrics)
in one project (lucene) to train a model and predict using the
same metrics in other projects (eclipse, mylyn and pde) and all
three kinds of classification methods. We also compared the
performance between cross-project prediction and original ones
using resampled data.

Fourthly, for Random Forest and Logistic Regression, there
are two implementation packages in Weka, R and RapidMiner.
We used results from the third experiment to compare with R.
By that case, we used sample data in R and tried to see if there
were any differences between two implementations.

At last, we chose CK-OO of 4 projects to do attribute
selection and LOG as classification method in order to see if
attribute selection could have a significant improvement.

B. Example illustration

First we preprocessed the data. In order to be general, we
only made two classes, buggy or not buggy. When we put the
data into Weka, it can be seen in Figure 1. We have 5 attributes:
number of bugs found until, number of nontrivial bugs found
until, number of major bugs found until, number of critical
bugs found unitil, number of high priority bugs found until.

Figure 1. Put data in Weka

Then we applied three classification methods on it using
ten-fold validation. Figure 2 shows the results of random forest
classification.

Figure 2. Running Result

We recorded the recall of class T, the classification accurcy
in a worksheet file. Then we used statistical analysis to analyze
the results.

IV. EXPERIMENT RESULTS

A. Description of the Experiments

For the experiments, we put the processed data into Weka,
and for each project, we used three classification methods:

random forest, logistic regression and decision tree on four sets
of metrics.

B. Results and Discussion

RQ1: Given different sets of attributes, how will the
performance vary between different classification methods?

For the evaluation results of different classification methods,
it can be seen in Figure 3.

As we can see, logistic regression had the highest accuracy
(87.21%) and random forest had the highest recall of True
value (22.54%).

The effect of classification methods is not statistical
significant with p > 0.05. And the effect of sets of attributes is
not statistical significant with p > 0.05 as well.

Figure 3. Accuracy and recall of each classification method

For the evaluation of different sets of attributes, the result
can be seen in Figure 4.

Figure 4. Accuracy and recall of each set of attributes

From the results we can see, although all the accuracy is
high in the tables above, the recall is very low. In real life, the
software development manager will pay more attention to the
situation of predicting right the bugs. So we picked the recall of
class buggy to evluate. This low recall maybe due to the
skewness of the dataset. For example, in the dataset of lucene,
the not buggy class has 627 instances while buggy has only 64
instances. So we consider resampling the data in order to gain
high recall.

RQ2: How will the performance vary if we balance the
training data (since most data in bug prediction is skewed)?

Firstly we tried different ratio of resampling the data. By
using the resampled data as training data and the original data
as testing data, we chose 0.6 because the accuracy dropped
when the ratio went higher.

As it can be seen in Figure 5, the accuracy did not vary
remarkably. The highest mean accuracy came from the RF
method, which was 90.20%, and the accuracy of DT and LOG
were 87.02% and 84.39% respectively. Not surprisingly, the
effect of resampling on the classification accuracy of these
classification methods was significant (p < .005). Using LSD
method, we found that the accuracy of RF was significantly
better than the accuracy of LOG and DT.

Figure 5. Accuracy of each classification method

The average recall of “buggy” of each method increased at
least 142%. The recall of RF was the highest which was 0.82,
and the lowest was 0.47 from LOG. Besides, the difference
between recall of using original data and using resampled data
as training data was significant (p < 0.05). See Figure 6.

Figure 6. Recall of each classification method

For skewed dataset, classification methods could fail to
classify the minority although the accuracy could be high,
wheras the class with low occurrence sometimes was more
important.

In bug prediction, actually the cost of misclasification was
hard to define. For example, if a class was buggy but was
predicted as not buggy, the influence of the bug(s) in the file
would only be revealed after the software was released. While
if a file contained no bug but was predicted as buggy,

developers might take more effort because they would try to
find bugs in a class which did not have bug. As a result,
developers would review or test the file more times to varify if
the bugs were covert.

So in the following sections, we considerd accuarcy as the
first evaluation critiron. If the accuarcy among different
methods or different metrics was not significant, we would
compare the recall of “buggy” (denoted as True) because bugs
would have a higher chance to be fixed as long as the file
which contained bugs was classified as “buggy”, and files
labeled with “buggy” were relatively hard to be classified.

In terms of set of attributes, the mean accuracy of CK-OO
was 89.72% which was the highest and the lowest mean
accuracy came from bug-metrics (83.80%). See Figure 7. The
difference of these set of attributes were statistically significant
(p < .05).

Figure 7. Accuracy using each set of attributes

Using LSD method, we found that the accuracy of ck-oo
method was significantly better than those of bug-metrics and
entropy. Though the accuracy of Churn was significant better
than that of Bug-metrics, the difference among it and Entropy
was not significant.

Besides, the difference of recall among different methods
was not significant (p > .05).

From these, we concluded that using metrics directly
related to code such as lines of code or changes of lines of code
could achieve the best result, whereas predicting bugs based on
previous defects (Bug-metrics) was not reliable: bugs didn’t
have the Matthew effect.

RQ3: How will the performance vary when we do cross-
project validation?

First part: We then did cross-project validation. We
arbitrary trained the model from lucene project without
resampling.

In this analysis, we ignore effect of set of attributes. The
results can be seen in Figure 8.

Figure 8. Accuracy and recall of each classification method

The mean accuracy of three methods are 83.81%, 82.56%
and 83.57%. And the effects of cross-project validation on all
of three methods are not statistically siginificant. This may be
also due to the skewness of the dataset.

It could be seen that for random forest and decision tree
classification methods, the effect of cross-project validation is
not statistical significant with t-value > 0.05. The mean recall
for these two methds are 24.22% and 22.26%. For logistical
regression, the effect of cross-project validation is statistical
significant with t-value = 0.004. The recall of class buggy is
29.97%, in comparison with 19.36% before.

Then we resampled the data, using logistic regression as the
classification methods to do the cross-project validation. The
results can be seen in the Figure 9.

Figure 9. Accuracy and recall using cross-project and non-cross-project

The original mean accuracy for logistic regression is 84.39%,
while cross-project mean accuarcy is 77.27%. The effect of
cross-project is significant with t-value =0.001. This means that
the accuracy is lower by doing cross-project prediction.

And for recall, the origin mean value is 46.98% and the
cross-project mean value is 48.06%. However, the effect of
cross-project is not statistical significant with t-value > 0.05.

This result means that cross-project prediction is not as good
as the origin ones since the accuracy dropped and no
improvements on recall.

RQ4: How will the performance vary if we used three
different implementation of these methods?

We picked the LOG method as classification method, the
resampled data set of eclipse as training data set and the
original data set of eclipse as testing data set for the purpose of
evaluation.

Because the options provided in the configuration of LOG
in these three tools were different (for example RapidMiner can
set kernel type but Weka can’t), we used the default
configuration to evaluate these tools.

As it shown in Figure 10, the accuracy varied slightly
among three tools, and R had the highest mean accuracy. But
the difference was not significant (p > .05). Although it was not
significant different, the p value was quite close to the
threshold which was 0.053.

Figure 10. Accuracy using each set of attributes

In contrast, the difference of recall was significant (p <
0.01). As can be seen in Figure 11, LOG in Weka had the
highest recall for each set of attributes, and LOG in
RapidMiner had the lowest recall for each set of attributes. The
mean recall for LOG in Weka was 0.61, and the mean recall for
R and RapidMiner was 0.51 and 0.41 respectively.

Figure 11. Recall using each set of attributes

The classification results could be different because of
different implementations and different configurations. Weka
provided the least flexibility of setting parameters of LOG, but
it had the highest accuracy and recall. R as a script language
offered much more options, and could reach considerable
accuracy with default options. But in terms of user-friendly, R
was not as good as Weka and RapidMiner. Besides, because
the dataset was relatively small, the execution speed of all three
tools were fast.

RQ5: Can we achieve better results of cross project
prediction by attribute selection?

Based on the previous sections, we chose CK-OO of 4
projects to do attribute selection and LOG as classification
method in order to see if attribute selection could have a
significant improvement.

We ranked the attributes in CK-OO by Chi-square method
in Weka for each project, and selected 8 attributes based on the
average rank of the attributes. See Table 1.

Table 1. Rank of each attribute

eclipse lucene mylyn pde average rank

rfc 3 6 3 1 3.25

fanOut 4 5 1 3 3.25

cbo 5 1 4 6 4

numberOfLinesOfCode 2 8 5 2 4.25

wmc 1 7 6 4 4.5

numberOfMethods 6 2 10 8 6.5

lcom 7 3 9 9 7

numberOfPrivateMethods 9 15 2 5 7.75
We selected the CK-OO from Lucene as training dataset

because this was the largest dataset. However, both the
differences of accuracy and recall between before the selection
and after the selection were not significant (p > .05).

V. CONLUSIONS

In this paper, we mined the relationship between bugs and
bug repositories. We did bug prediction on four java-based
projects using four sets of attributes and three classification
methods.

We mainly answered five research questions.
First of all, we found that the effects of sets of attributes

and classification methods were not statistically significant on
accuracy of prediction and the recall of buggy class.

Then we balanced the dataset, ran the same experiment
again, the effect of resampling is significant in accuracy and
recall. Both accuracy and recall are higher than the original
ones.

Then we ran cross project prediction on original data, there
was no significant difference between them. After resampling,
we ran the cross project prediction using logistic regression
again, the accuracy dropped while recall remained no
significant difference.

For different implementation of logistic regression in R,
Weka and RapidMiner, the effect on accuracy was not
significant different while Weka accomplished the highest
value of recall.

At last, we did attribute selection of CK-OO metrics to do
cross project prediction, both the differences of accuracy and
recall between before the selection and after the selection were
not significant.

REFERENCES

[1] D’Ambros, Marco, Michele Lanza, and Romain Robbes.
"Evaluating defect prediction approaches: a benchmark and an
extensive comparison." Empirical Software Engineering 17.4-5
(2012): 531-577.

[2] Shyam R. Chidamber and Chris F. Kemerer. A metrics suite for
object oriented design. IEEE Trans. Software Eng., 20(6):476–
493, 1994.

[3] Ahmed E. Hassan. Predicting faults using the complexity of
code changes. In Proceedings of ICSE 2009, pages 78–88, 2009.

[4] Allen P. Nikora and John C. Munson. Developing fault
predictors for evolving software systems. In Proceedings of the
9th International Symposium on Software.

[5] Liaw, Andy, and Matthew Wiener. "Classification and
Regression by randomForest." R news 2.3 (2002): 18-22.

[6] Hosmer, David W., Stanley Lemeshow, and Rodney X.
Sturdivant. Introduction to the logistic regression model. John
Wiley & Sons, Inc., 2000.

