BLUECOOCH Securicy/

0

ACCACKS

Team 8: Marjia, Doyle and Attalla

WHAC IS BLUECOOCH?

- Bluetooth is a wireless method of transferring information from one device to another.
- Bluetooth is one of the most secure wireless communication protocols.
- It exchanges data between two devices in the form of packet.
- A packet consists of Access Code, Header and Payload.

BLUECOOCH CONNECCION

- Bluetooth technology is used primarily to establish wireless personal area networks (WPAN)
- It must establish that this is a device that has connected before or to set up a new connection.
- It requires approval for new connections
- A Bluetooth connection is usually secure from hacking from outside devices not already part of your network.

More Bluetooth devices

Benefics of Bluecooch technology

- Cable replacement.
- Ease of file sharing.
- Wireless

synchronization.

• Internet connectivity.

BLUECOOCH VULNERABILICIES:

- After first use, unit key becomes public
- Can lead to eavesdropping
- Pin management
- Encryption keystream repetition
- Secure storage of link keys
- Repeated authentication attempts

Some headsets have security vulnerabilities:

- It is easier to hack
- Easy to listen in on or record conversation
- A hacker could then gain personal info to

use against you

BLUECOOCH IS A VERY ACCURACE CRACKING SIGNAL!

- Many apps have access to monitor location
- Using bluetooth on a device
- When bluetooth is turned off, it stops transmitting, but still recognizes signals near your device.

Bluetooth Attacks

PIN THEFC ACCACK

- Full control of device
 - Steal, alter or delete data from memory or external storage
- Pins are used during pairing
- After PIN exchange, pairing is done in 3 step
 - Key init generation
 - Link Key generation
 - Authentication
 - Encryption via Link Key (optional)
 - Attacker can **eavesdrop** on pairing
- All that's left is PIN which is 1-8 bytes
 - brute force

Fig. 1. LMP-Pairing and LMP-Authentication [9, vol.4, p.223-224]

Herfurt M, Mulliner C. Bluetooth security vulnerabilities and bluetooth projects, Web page; 2005. Available from:http://trifinite.org/trifinite_stuff.html. [Accessed November 11]

PIN CRACKING ACCACK (ONLINE)

- Attacker does not have to eavesdrop on pairing in order to crack PIN
- Generate Link Key based on a guessed PIN

- If response does not match challenge, the wrong PIN was guessed
 - Attacker starts over with another PIN and different Address

Shaked Y, Wool A. Cracking the Bluetooth PIN, in 3rd international conference on mobile systems, applications, and services. New York, USA: ACM, pp. 39–50, 2005.

prevention and pairing guide

- Turn bluetooth off
- Undiscoverable
- Use a strong PIN and update regularly
- Pair in short range and in private
- Avoid unknown pairing
- Monitor paired list

Shaikh, Shahriar, Hassan. Security Threats in Bluetooth Technology. ScienceDirect.com [retrieved_2019-11-10]

Key Negotiation Attack

- Key Negotiation of Bluetooth (KNOB) attack, affects <u>all</u> Bluetooth versions!
- The specification of encryption is *negotiated* by the paired parties
 - This process is <u>not authenticated</u> or checked for integrity!

KNOB Attack Stages

- Alice and Bob securely pair in absence of Eve
- 2 Alice and Bob initiate a secure connection
- 3 Charlie makes the victims negotiate an encryption key with 1 byte of entropy
- Bluetooth is used worldwide but different countries have different cryptographic export controls or privacy laws, so the key size is a negotiable parameter in this process.
- The key size (N) is the entropy of the key, Bluetooth minimum is 1 byte!
 - 1 byte of entropy == 256 candidate keys! (easy to bruteforce!)

Antonioli, Uanlele. Exploiting Low Entropy in the Encryption Key Negotiation Of Bluetooth BK/EDK. *Https://Francozappa.github.io/Publication/Knob/Slides.pdf*, Singapore University of Technology and Design 2019, francozappa.github.io/publication/knob/slides.pdf.

Capabilities

Attacker can sniff traffic

Attacker can inject traffic

Can take control of either device!

Affected <u>ALL</u> smartphones and major bluetooth devices as of 2018!

Discovery

Discovered in 2018

Confidentially released to industry (Bluetooth Group)

Patches released and public disclosure in August 2019

IMPACT

naires Innovation Leadership Money Business Small Busi

13,783 views | Aug 15, 2019, 01:01an

Forbes

New Critical Bluetooth Security Issue Exposes Millions Of Devices To Attack

Bluetooth[®]

THREE KEY QUESTIONS

How is bluetooth an accurate tracking signal even when it is turned off?

Does an attacker have to be eavesdropping in order to crack a bluetooth pin?

3.

2.

What does the key negotiation procedure lack that makes it vulnerable to KNOB attack?