Overview

- What is DNS?
- Vulnerabilities and Attacks
- DNSSEC as a solution
What is DNS?

www.yorku.ca

130.63.236.137
DNS

“Phonebook of the Internet”

- Domain Name System
- Translates domain names to IP addresses
- Motivation
 - Eliminates memorizing IP addresses
- Application Layer Protocol
- Operates on UDP port 53
 - Fast and low overhead
DNS Lookup

- **DNS Resolver**
 - Receives DNS queries from applications such as browsers

- **Root Server**
 - Provides TLD address

- **Top-Level-Domain Server**
 - Provides nameserver address

- **Authoritative Name Server**
 - Provides hostname’s IP address

[Link](https://www.cloudflare.com/learning/dns/what-is-dns/)
DNS Hierarchy

Vulnerabilities

Attacks
Vulnerabilities

- Use of unsigned, unencrypted UDP packets
 - No source authentication
 - No data integrity check
- Use of cache for reduced access time
 - Cache inconsistency
 - Staleness of data
- Stored data (Resource Records) on name servers
Cache Poisoning

- Exploit on usage of UDP and a cache
- Method 1: Packet Interception
 - Man-in-the-Middle attack
- Method 2: ID Guessing and Query Prediction
 - Old servers used sequential transaction IDs
- 1996 - InterNIC
- 2008 - Kaminsky bug
 - Replaces NS Authority record in cache for target domain

https://youtu.be/lVifa7QSQDY
Cache Poisoning

- Exploit on usage of UDP and a cache
- Method 1: Packet Interception
 - Man-in-the-Middle attack
- Method 2: ID Guessing and Query Prediction
 - Old servers used sequential transaction IDs
- 1996 - InterNIC
- 2008 - Kaminsky bug
 - Replaces NS Authority record in cache for target domain

https://www.imperva.com/learn/application-security/dnsssec/
Domain Hijacking

- Attackers take control of the domain registration
- Domain information changed to point to a malicious nameserver
- 2008 - icann.org & iana.org
 - Social engineering
- 2016 - Brazilian banks
 - 6 hours, $27B of assets
- Unpaid registrar bill

https://blog.cloudflare.com/introducing-cloudflare-registrar/
DNS Flood

- DoS attack to deny legitimate requests
 - UDP easy to forge, no handshake required
 - Exhaust all available UDP sockets
- 2013 - Spamhaus
- 2015 - .tr ccTLD name servers
 - Isolated Turkey from the World
- Poorly-formatted DNS requests
 - 14% of queries on root servers

https://www.imperva.com/learn/application-security/dns-flood/
DNSSec

- Provides security for the DNS protocol
- Created in 2005 and made fully usable in 2010 (ICANN)
- Ensures
 - Origin Authentication
 - Data Integrity
 - Authenticated Denial of Existence
How it Works?

- Asymmetric Key Cryptography
- Hash Function

![Diagram of DNSSEC](image)
How it Works?

- Recursive server has root server’s public key.
- Recursive server sends iterative request to root server.
- Root server responds back with
 - TLD server details
 - TLD server public key encrypted by it’s private key
 - Root servers public key record encrypted by it’s private key
- Recursive server uses root servers public key to
 - Decrypt these encrypted files
 - Gets the public key for the TLD server from decrypted file
 - Compare its public key with the one the root server sent
- The same process continues for TLD & Authoritative server.
DNSSec Vulnerabilities

- Increase the query response time
- Root public key injection attack would compromise the chain of trust
- DNSSec requires time synchronisation, if attacker can cause disruption in the synchronisation then DNSSec fails to work properly
Questions:

1. DNS is a protocol on which OSI layer?

2. Can the Internet survive without DNS?

3. How important is DNSSec?
References

DNSSec https://www.keycdn.com/support/dnssec