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Recap (1/4)
Binary Linear Classification
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Recap (2/4)
Perceptron Learning Algorithm (PLA)

h(x) = sign(z WiX;)

h(z) = sign(w’ x)




Recap (3/4)
Misclassifications and updates

y=+1 o whyx

In a binary linear classification, there are two possibilities:

sign(w' x;) # y;

1. v -1 for a t; 1
2.V 1 for a t; -1
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Recap (4/4)
PLA Algorithm

Input: D = ((x1,t1),...(Xn, tn))

Initialize: w! =0
Fort=1.2....:

If there exits an i with y; (w,x;) < 0 (a misclassified point)

then update: w”” L —wY + ViXi

Output: w”

Good tool to visualize PLA:
https://lecture-demo.ira.uka.de/neural-network-demo/?preset=Rosenblatt%20Perceptron
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Outline
Lecture 3

* Learning Notion

* Input Representation
* Pocket Algorithm

* Linear Regression (LR)

* Nonlinear Transformation



Feasibility of Learning
A Bin of Marbles

IP [picking a red marble] = u
IP [picking a green marble] =1 — u

The value of u is unknown .

Experiment:

We pick N marbles independently.
The fraction of Red marbles in sample =9

BIN

s AMPLE
m 0000000000
V = fraction

of red marbles

AAAAAAAAA

W = probability
of red marbles
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Relation Between u and ¥

Question 1 BIN

o i P
Does ¥ say anything about u SAMPLE
* NO, Samples can be mostly red while the m 00000000060
V = fraction

bin was mostly green
of red marbles

 However, the sample frequency of these
two are likely close to each other.

AAAAAAAAA

W = probability
Question 2 of red marbles
* What does ¥ say about u ?

* In a big sample (large N), U is probably
close to u within a margin (&)
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Hoeffding's Inequality!!]

[1] Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables. Journal of
the American statistical association, 58(301), 13-30.

In a big sample (large N), 9 is probably close to u within ¢

25N
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In other word, the statement “u = 9” iSAP.A.C
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Notation for Learning

Both uand 9 depend on which hypothesis (h)

/ s = /,//1 )

Thus, Hoeffding inequality becomes:

9 0000000000
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MNIST Dataset!!] SVHN Dataset!2
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[1] LeCun, Yann. "The MNIST database of handwritten digits." http://yann. lecun. com/exdb/mnist/ (1998).
[2] http://ufldl.stanford.edu/housenumbers/ amir Ashouri - EECS4404/5327 - Fall 2019 11



Representation

* Input
e Each image is a 28*28 pixel
o X =(%,X1,X5,00rX784)

* Model

* Linear Model weights: (wg,Wy,...,W-g4)

* Features

* Downsizing the large vector of input:

» Capturing only certain metrics instead of the raw data(e.g., intensity, symmetry (vertical,
horizontal, diagonal), sharpness, etc.)

linear model: (xg,x1,Z2)



Representation (2)
Case of 1'svs. 5's

5
S
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Applying PLA
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Rosenblatt Theorem (1957)

Let w* be the output of the PLA on a linearly separable dataset D. The PLA
terminates in almost:

1

2
r R= mag ||X,|

: wix,
\ P = mmn | e |
1<n<N [|W*|]

R: Radius of dataset
P: Distance of D to the decision boundary
w* = margin



Pocket Algorithm

It is helpful when our D = {(x;, V4), ... , (X,,¥n)} IS not
linearly separable. Since PLA is not guaranteed to
terminate.

Pocket algorithm, keep the “best weight vector” found
up to iteration t in the pocket. It only replaces it if a
better weight vector was found.




Pocket Algorithm Steps

1) Set the pocket weight vector (w) to w(0) of PLA
2) Fort =0,1, 2, ..., t-1 do:

e Run PLA for one update to get w(t + 1)

e Evaluate F;,(w(t+ 1))
o If Fjy(w(t+1)) < Ep(w)=>w=w(t+1)

3) Return w at the end



The Pocket Algorithm

The algorithm saves the best found result until a better result is reached:

PLA: Pocket:
0 50%

50% Eout 0
10% 10%

i ﬂ

- Eout

1% | 1%}
Ein
" " .Eln 5 i 2 " 5
0 250 500 750 1000 0 250 500 750 1000
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The Pocket Algorithm(2)
Classification Comparison

PLA:

Symmetry

Average Intensity

Pocket:

Symmetry

% N RX
Average Intensity
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Credit Approval Revisited

. o o o .OQQ' OOQQ,
Classification vs. Regression S &L
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Applicant Sy
Info 27 M |40k 12k ® ® ® +1/-1
Input

Each Customer Representative Features (Age, Salary, etc.)
X =(4,X1, X9, e, Xg)

Linear Regression Output:

d
h,(X) = Z w; Tr; = wW'X
1=0
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Example #2
Exam Marks

Say we want to predict the mark on the exam of a student in this class. For a

student, we collect the following “measurements”:

* x1 = number of hours they studied
* X2 = number of hours of sleep

* X3 =age
x4 = height

* Our homegrown predictor:

mark on exam = b

1

Will is work well on unseen data?

x5 = amount of alcohol consumed

.xl

.21‘2

.xS

.x4




LR Formalization

Training Set

Prediction Function

Linear Model

D = {(ZEl,yl),-.-,(ajNny)}
z; € Ry, € R

g = h(x)

(x) = wo +w1T1 + -+ + WaTa)

W = (’lU(), Wi, ...,

x = (20,1, -



Square Error vs. Absolute Error

« Square error provides better properties:

1. If Xis a random variable (e.g., toss a coin), the estimator that minimizes
the square error is mean, whereas median for absolute error.

fmean 2 E (X+Y) = E(X) + E(Y)
If median 2 E (X+Y) =! E(X) + E(Y)

2. If X is an independent variable (e.g., age, time, etc.):

/Iqu.Err -2 Var (X+Y) = Var (X) + Var (Y)
If Abs.Err 2 Var (X+Y) =! Var (X) + Var(Y)

See more info about random variables property:
http://facweb.cs.depaul.edu/sjost/csc423/documents/rv-props.htm



http://facweb.cs.depaul.edu/sjost/csc423/documents/rv-props.htm

LR Error Estimation

we need to compute average square error

1 N
Fonl) = 7 (01—

e; (w)

e;(w) = squared error on ith training example



Measuring Error
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Example L

Linear Regression (a2 )
5 .
x = advertising cost in one week v A
y = sales in one week A F%
|..

historical data D; d =1

| > (et
We need to fit a linear model: y = wg + w1

wop = sales when x = 0
w; = increase in sales, for unit increase in cost

Refined Model

Y = Wy + W1T1 + Wakg + W3x3

T TV ads (%)
Xx=| 2o |= radio ads ($) largest w; = most profitable x;
x3 | | newspaper ads ($) |



Design Matrix

To obtain a concise notation, we write the collection of data points
as rows of a matrix:

/Xl \ (XIO X11 o X1D \
X2 X20 X211 ... Xop
X — .
K XN } \ XNO XN oo XND }

This is also called the design matrix.
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Least Squares

* |t is a standard approach in regressions to approximate the
solution of problem.

* There are many least square methods:

MLE (Maximum likelihood Estimation)
MAP (Maximum A posteriori Probability)
Analytical Solution

Geometric Interpolation

ok~

,lll



Minimizing Error in LR
linear systems of equations: (i =1, 2, 3, ..., N)

Yi = Wo + W1T;1 + Waxj2 + -+ Waki d
%dl‘ 7/9\//4\/)4/7/(‘%//#{ )

«724’7‘[}? 5(:_~_ -
'
D=

? ? J+1 >+ An exact solution exist (model is COHSlstent)
[

O \ie 5 . RI2 1Y ¢
chatie No exact solution _f/ Mg AMin g—g "JX )

P
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Minimizing LR Error

Given D, find w € R%! to minimize E;,, (w)
1. Analytic solution

2. Geometric solution

Reading: PRML 3.1.1, 3.1.2,3.1.4



