LASSONDE YORK U

 Lecture 3: Linear Model \& RegressionEECS4404/5327
Introduction to Machine Learning
And Pattern Recognition

Amir Ashouri
Fall 2019

Recap (1/4)
 Binary Linear Classification

Applicant Info

Recap (2/4)
Perceptron Learning Algorithm (PLA)

$$
\begin{gathered}
h(x)=\operatorname{sign}\left(\sum_{\mathbf{i}=\mathbf{0}}^{\mathbf{D}} \mathbf{w}_{\mathbf{i}} \mathbf{x}_{\mathbf{i}}\right) \\
h(x)=\operatorname{sign}\left(w^{T} x\right)
\end{gathered}
$$

Recap (3/4)

Misclassifications and updates

In a binary linear classification, there are two possibilities:

$$
\operatorname{sign}\left(w^{\top} x_{i}\right) \neq y_{i}
$$

1. $y_{i}=+1$ for a $t_{i}=-1$
2. $y_{i}=-1$ for a $t_{i}=+1$

$y=-1$
w+y \mathbf{x}

Recap (4/4)
 PLA Algorithm

```
Input: \(D=\left(\left(\mathrm{x}_{1}, t_{1}\right), \ldots\left(\mathrm{x}_{N}, t_{N}\right)\right)\)
```

Initialize: $w^{1}=0$
For $t=1,2, \ldots$:
If there exits an i with $y_{i}\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle \leq 0$ (a misclassified point) then update: $\mathbf{w}^{y+1}=\mathbf{w}^{y}+y_{i} \mathbf{x}_{i}$

Output: w ${ }^{y}$

Good tool to visualize PLA:
https://lecture-demo.ira.uka.de/neural-network-demo/?preset=Rosenblatt\ Perceptron

Outline
 Lecture 3

- Learning Notion
- Input Representation
- Pocket Algorithm
- Linear Regression (LR)
- Nonlinear Transformation

Feasibility of Learning A Bin of Marbles

\mathbb{P} [picking a red marble] $=\mu$
\mathbb{P} [picking a green marble] $=1-\mu$
The value of μ is unknown.

Experiment:
We pick \boldsymbol{N} marbles independently.

The fraction of Red marbles in sample $=\vartheta$

Relation Between μ and ϑ

Question 1

- Does ϑ say anything about μ ?
- NO, Samples can be mostly red while the bin was mostly green
- However, the sample frequency of these two are likely close to each other.

Question 2

$$
\begin{aligned}
& \mu=\text { probability } \\
& \text { of red marbles }
\end{aligned}
$$

- What does ϑ say about μ ?
- In a big sample (large \boldsymbol{N}), ϑ is probably close to μ within a margin (ε)

Hoeffding's Inequality ${ }^{[1]}$

[1] Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables. Journal of the American statistical association, 58(301), 13-30.

In a big sample (large \mathbf{N}), ϑ is probably close to μ within ε

$$
P[|\nu-\mu|>E] \leq 2 e^{-2 \epsilon^{2} N}
$$

In other word, the statement " $\mu=\vartheta$ " is P.A.C

Notation for Learning

Both μ and ϑ depend on which hypothesis (h)

Thus, Hoeffding inequality becomes:

$$
\mathbb{P}\left[\left|E_{i n}(h)-\varepsilon_{\varepsilon_{01}}(h)\right|>\theta\right] \leqslant 2 e^{-2 \epsilon^{2} \mu}
$$

$E_{\text {in }}(h)$

MNIST Dataset ${ }^{[1]}$

SVHN Dataset ${ }^{[2]}$

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9

[1] LeCun, Yann. "The MNIST database of handwritten digits." http://yann. lecun. com/exdb/mnist/ (1998).
[2] http://ufldl.stanford.edu/housenumbers/ Amir Ashouri - EECS4404/5327- Fall 2019

Representation

- Input
- Each image is a $28 * 28$ pixel
- $X=\left(X_{0}, x_{1}, x_{2}, \ldots, x_{784}\right)$
- Model
- Linear Model weights: $\left(w_{0}, w_{1}, \ldots, w_{784}\right)$

- Features
- Downsizing the large vector of input:
- Capturing only certain metrics instead of the raw data(e.g., intensity, symmetry (vertical, horizontal, diagonal), sharpness, etc.)
linear model: $\left(x_{0}, x_{1}, x_{2}\right)$

Representation (2)
Case of 1's vs. 5's

Applying PLA

Rosenblatt Theorem (1957)

Let w^{*} be the output of the PLA on a linearly separable dataset D. The PLA terminates in almost:
$T \leq \frac{R}{P^{2}}, R=\max _{1 \leq n \leq N}\left\|X_{n}\right\|^{2}$

R: Radius of dataset
P : Distance of D to the decision boundary
$\mathrm{w}^{*}=$ margin

Pocket Algorithm

It is helpful when our $D=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$ is not linearly separable. Since PLA is not guaranteed to terminate.

Pocket algorithm, keep the "best weight vector" found up to iteration t in the pocket. It only replaces it if a better weight vector was found.

Pocket Algorithm Steps

1) Set the pocket weight vector ($(\underline{\hat{W}})$ to $\underline{\mathrm{w}}(0)$ of PLA
2) For $\mathrm{t}=0,1,2, \ldots, \mathrm{t}-1 \mathrm{do}$:

- Run PLA for one update to get $\underline{\mathrm{w}}(t+1)$
- Evaluate $E_{i n}(\underline{\mathrm{w}}(t+1))$
- If $E_{i n}(\underline{\mathrm{w}}(t+1)) \leq E_{i n}(\underline{\mathrm{w}}) \Rightarrow \underline{\hat{\mathrm{w}}}=\underline{\mathrm{w}}(t+1)$

3) Return $\hat{\underline{\mathrm{W}}}$ at the end

The Pocket Algorithm

The algorithm saves the best found result until a better result is reached:

The Pocket Algorithm(2)
 Classification Comparison

Pocket:

Credit Approval Revisited Classification vs. Regression

Applicant

 Info

Input
Each Customer Representative Features (Age, Salary, etc.)

$$
X=\left(x_{0}, x_{1}, x_{2}, \ldots, x_{d}\right)
$$

Linear Regression Output:

$$
h(\mathbf{x})=\sum_{i=0}^{d} w_{i} x_{i}=\mathbf{w}^{\top} \mathbf{x}
$$

Example \#2

Exam Marks

Say we want to predict the mark on the exam of a student in this class. For a student, we collect the following "measurements":

- x1 = number of hours they studied
- x2 = number of hours of sleep
- x3 =age
- x4 = height
- x5 = amount of alcohol consumed
- Our homegrown predictor:
mark on exam $=\mathrm{b}+1 \cdot x_{1}+.2 x_{2}+0 \cdot x_{3}+0 \cdot x_{4}+(-2) \cdot x_{5}$
Will is work well on unseen data?

LR Formalization

Training Set

$$
\begin{array}{r}
D=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{N}, y_{N}\right)\right\} \\
x_{i}
\end{array} \in \mathbb{R}^{d}, y_{i} \in \mathbb{R} \text { }
$$

Prediction Function

$$
\hat{y}=h(\underline{\mathrm{x}})
$$

$$
\begin{aligned}
& \left.(\underline{\mathrm{x}})=w_{0}+w_{1} x_{1}+\cdots+w_{d} x_{d}\right) \\
& \underline{\mathrm{w}}=\left(w_{0}, w_{1}, \ldots, w_{d}\right)=\sum_{i=0}^{d} w_{i} x_{i} \quad\left(x_{0}=1\right) \\
& \underline{\mathrm{x}}=\left(x_{0}, x_{1}, \ldots, x_{d}\right)=\underline{\mathrm{w}}^{T} \underline{\mathrm{x}}
\end{aligned}
$$

Square Error vs. Absolute Error

- Square error provides better properties:

1. If X is a random variable (e.g., toss a coin), the estimator that minimizes the square error is mean, whereas median for absolute error.

$$
\text { If mean } \rightarrow \mathrm{E}(\mathrm{X}+\mathrm{Y})=\mathrm{E}(\mathrm{X})+\mathrm{E}(\mathrm{Y})
$$

$$
\text { If median } \rightarrow \mathrm{E}(\mathrm{X}+\mathrm{Y})=!\quad \mathrm{E}(\mathrm{X})+\mathrm{E}(\mathrm{Y})
$$

2. If X is an independent variable (e.g., age, time, etc.):

$$
\begin{aligned}
& \text { If Sq.Err } \rightarrow \operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y) \\
& \text { If Abs.Err } \rightarrow \operatorname{Var}(X+Y)=!\operatorname{Var}(X)+\operatorname{Var}(Y)
\end{aligned}
$$

See more info about random variables property:

LR Error Estimation

we need to compute average square error

$$
E_{m}(\underline{\mathrm{~W}})=\frac{1}{N} \sum_{i=1}^{N}(\underbrace{\left.y_{i}-\underline{\mathrm{W}}^{T} \underline{\mathrm{x}}_{i}\right)^{2}}_{e_{i}(w)}
$$

$$
e_{i}(w)=\text { squared error on ith training example }
$$

Measuring Error Linear Regression Illustration

2D Dimension

3D Dimension

Example Linear Regression

$\mathrm{x}=$ advertising cost in one week $\mathrm{y}=$ sales in one week
historical data $\mathrm{D} ; \mathrm{d}=1$

We need to fit a linear model: $y=w_{0}+w_{1} x$ $w_{0}=$ sales when $\mathrm{x}=0$
$w_{1}=$ increase in sales, for unit increase in cost
Refined Model
$\underline{\mathrm{x}}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}\mathrm{TV} \operatorname{ads}(\$) \\ \operatorname{radio} \operatorname{ads}(\$) \\ \text { newspaper } \operatorname{ads}(\$)\end{array}\right]$
$y=w_{0}+w_{1} x_{1}+w_{2} x_{2}+w_{3} x_{3}$
largest $w_{i} \Rightarrow$ most profitable x_{i}

Design Matrix

To obtain a concise notation, we write the collection of data points as rows of a matrix:

$$
\mathbf{X}=\left(\begin{array}{c}
\mathbf{x}_{1} \\
\mathbf{x}_{2} \\
\cdots \\
\ldots \\
\mathbf{x}_{N}
\end{array}\right)=\left(\begin{array}{cccc}
x_{10} & x_{11} & \ldots & x_{1 D} \\
x_{20} & x_{21} & \ldots & x_{2 D} \\
\ldots & & & \\
\ldots & & & \\
x_{N 0} & x_{N 1} & \ldots & x_{N D}
\end{array}\right)
$$

This is also called the design matrix.

Least Squares

- It is a standard approach in regressions to approximate the solution of problem.
- There are many least square methods:

1. MLE (Maximum likelihood Estimation)
2. MAP (Maximum A posteriori Probability)
3. Analytical Solution
4. Geometric Interpolation
5. ,...

Minimizing Error in LR

linear systems of equations: $(\mathrm{i}=1,2,3, \ldots, \mathrm{~N})$

$$
\begin{aligned}
& y_{i}=w_{0}+w_{1} x_{i, 1}+w_{2} x_{i, 2}+\cdots+w_{d} x_{i, d}
\end{aligned}
$$

Minimizing LR Error

Given D , find $\underline{\mathrm{w}} \in \mathbb{R}^{d+1}$ to minimize $E_{i n}(\underline{\mathrm{w}})$

1. Analytic solution
2. Geometric solution

Reading: PRML 3.1.1, 3.1.2, 3.1.4

