

Lecture 3: Linear Model & Regression

EECS4404/5327 Introduction to Machine Learning And Pattern Recognition

Amir Ashouri

Fall 2019

Recap (1/4) Binary Linear Classification

Recap (2/4) Perceptron Learning Algorithm (PLA)

$$h(x) = \operatorname{sign}(\sum_{i=0}^{D} \mathbf{w_i x_i})$$

Recap (3/4) Misclassifications and updates

In a binary linear classification, there are two possibilities:

 $sign(w^T x_i) \neq y_i$

1.
$$y_i = +1$$
 for a $t_i = -1$
2. $y_i = -1$ for a $t_i = +1$

Recap (4/4) PLA Algorithm

Input: $D = ((x_1, t_1), ..., (x_N, t_N))$ Initialize: $w^1 = 0$

For
$$t = 1, 2, ...$$
:

If there exits an *i* with $y_i \langle \mathbf{w}, \mathbf{x}_i \rangle \leq 0$ (a misclassified point) then update: $\mathbf{w}^{y+1} = \mathbf{w}^y + y_i \mathbf{x}_i$

Output: w^{y}

Good tool to visualize PLA:

https://lecture-demo.ira.uka.de/neural-network-demo/?preset=Rosenblatt%20Perceptron

Outline Lecture 3

- Learning Notion
- Input Representation
- Pocket Algorithm
- Linear Regression (LR)
- Nonlinear Transformation

Feasibility of Learning A Bin of Marbles

 \mathbb{P} [picking a **red** marble] = μ \mathbb{P} [picking a **green** marble] = $1 - \mu$

The value of μ is <u>unknown</u>.

Experiment: We pick N marbles independently. The fraction of Red marbles in sample = ϑ

Relation Between μ and ϑ

Question 1

- Does ϑ say anything about μ ?
 - NO, Samples can be mostly red while the bin was mostly green
 - However, the sample frequency of these two are likely close to each other.

Question 2

- What does ϑ say about μ ?
 - In a big sample (large **N**), ϑ is probably close to μ within a margin (ε)

Hoeffding's Inequality^[1]

[1] Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables. *Journal of the American statistical association*, *58*(301), 13-30.

In a big sample (large N), ϑ is probably close to μ within ε

 $\mathbb{P}[|\mathcal{D}-\mathcal{M}| > \in] \leq 2e^{-2e^2N}$

In other word, the statement " $\mu = \vartheta$ " is **P.A.C** Robatty Gravinski Correct

ECE421/1513 - Amir Ashouri - 2019

Notation for Learning

Both μ and ϑ depend on which hypothesis (h)

Dis in sample Ein (h) Mis out of sample Fout (h)

Thus, Hoeffding inequality becomes:

 $P\left[\left|E_{in}(h)-E_{sut}(h)\right| > \epsilon\right] \leq 2e^{-2\epsilon N}$

MNIST Dataset^[1]

SVHN Dataset^[2]

[1] LeCun, Yann. "The MNIST database of handwritten digits." http://yann. lecun. com/exdb/mnist/ (1998).
 [2] http://ufldl.stanford.edu/housenumbers/ Amir Ashouri - EECS4404/5327 - Fall 2019

Representation

- Input
 - Each image is a 28*28 pixel
 - $X = (x_0, x_1, x_2, ..., x_{784})$
- Model
 - Linear Model weights: (w₀,w₁,...,w₇₈₄)
- Features
 - Downsizing the large vector of input:
 - Capturing only certain metrics instead of the raw data(e.g., *intensity*, *symmetry* (vertical, horizontal, diagonal), *sharpness*, etc.)

linear model:
$$(x_0, x_1, x_2)$$

Representation (2) Case of 1's vs. 5's

Applying PLA

Rosenblatt Theorem (1957)

Let w^* be the output of the PLA on a linearly separable dataset D. The PLA terminates in almost:

R: Radius of dataset P: Distance of D to the decision boundary w* = margin

Pocket Algorithm

It is helpful when our $D = \{(x_1, y_1), ..., (x_n, y_n)\}$ is **not** linearly separable. Since PLA is not guaranteed to terminate.

Pocket algorithm, keep the "best weight vector" found up to iteration t in the pocket. It only replaces it if a better weight vector was found.

Pocket Algorithm Steps

1) Set the pocket weight vector $(\underline{\hat{w}})$ to $\underline{w}(0)$ of PLA 2) For t = 0, 1, 2, ..., t-1 do:

- Run PLA for one update to get $\underline{\mathbf{w}}(t+1)$
- Evaluate $E_{in}(\underline{w}(t+1))$
- If $E_{in}(\underline{w}(t+1)) \leq E_{in}(\underline{w}) \Rightarrow \underline{\hat{w}} = \underline{w}(t+1)$
- 3) Return $\underline{\hat{w}}$ at the end

The Pocket Algorithm

The algorithm saves the best found result until a better result is reached:

The Pocket Algorithm(2) Classification Comparison

Input

Each Customer Representative Features (Age, Salary, etc.)

$$X = (x_0, x_1, x_2, ..., x_d)$$

Linear Regression Output:

$$h(\mathbf{x}) = \sum_{i=0}^d w_i \ x_i = \mathbf{w}^{{\scriptscriptstyle\mathsf{T}}} \mathbf{x}$$

Example #2 Exam Marks

Say we want to predict the mark on the exam of a student in this class. For a student, we collect the following "measurements":

- x1 = number of hours they studied
- x2 = number of hours of sleep
- x3 =age
- x4 = height
- x5 = amount of alcohol consumed
- Our homegrown predictor:

mark on exam = b + 1 $\cdot x_1 + .2x_2 + 0 \cdot x_3 + 0 \cdot x_4 + (-2) \cdot x_5$

Will is work well on unseen data?

LR Formalization

Training Set
$$D = \{(x_1, y_1), \dots, (x_N, y_N)\}$$

 $x_i \in \mathbb{R}^d, y_i \in \mathbb{R}$

Prediction Function
$$\hat{y} = h(\underline{\mathbf{x}})$$

Linear Model

$$(\underline{\mathbf{x}}) = w_0 + w_1 x_1 + \dots + w_d x_d)$$
$$\underline{\mathbf{w}} = (w_0, w_1, \dots, w_d) = \sum_{i=0}^d w_i x_i \quad (x_0 = 1)$$
$$\underline{\mathbf{x}} = (x_0, x_1, \dots, x_d) = \underline{\mathbf{w}}^T \underline{\mathbf{x}}$$

Square Error vs. Absolute Error

- Square error provides better properties:
- 1. If X is a <u>random variable</u> (e.g., toss a coin), the estimator that minimizes the square error is <u>mean</u>, whereas <u>median</u> for absolute error.

If mean $\rightarrow E(X+Y) = E(X) + E(Y)$ If median $\rightarrow E(X+Y) = ! E(X) + E(Y)$

2. If X is an independent variable (e.g., age, time, etc.):

If Sq.Err
$$\rightarrow$$
 Var(X+Y) = Var(X) + Var(Y)
If Abs.Err \rightarrow Var(X+Y) =! Var(X) + Var(Y)

See more info about random variables property:

http://facweb.cs.depaul.edu/sjost/csc423/documents/rv-props.htm

LR Error Estimation

we need to compute average square error

$$E_m(\underline{\mathbf{w}}) = \frac{1}{N} \sum_{i=1}^{N} (\underbrace{y_i - \underline{\mathbf{w}}^T \underline{\mathbf{x}}_i}_{e_i(w)})^2$$

 $e_i(w) =$ squared error on ith training example

Example Linear Regression

x = advertising cost in one weeky = sales in one week

historical data D; d = 1

$$J(a|e)$$

 $J(x)$
 $z z z$
 $z z z$
 $z z z z$

We need to fit a linear model: $y = w_0 + w_1 x$ $w_0 = \text{sales when } x = 0$

 w_1 = increase in sales, for unit increase in cost

Refined Model

$$\underline{\mathbf{x}} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} \text{TV ads } (\$) \\ \text{radio ads } (\$) \\ \text{newspaper ads } (\$) \end{bmatrix}$$

 $y = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3$
largest $w_i \Rightarrow \text{most profitable } x_i$

Design Matrix

To obtain a concise notation, we write the collection of data points as rows of a matrix:

$$\mathbf{X} = \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \dots \\ \mathbf{x}_N \end{pmatrix} = \begin{pmatrix} x_{10} & x_{11} & \dots & x_{1D} \\ x_{20} & x_{21} & \dots & x_{2D} \\ \dots \\ \dots \\ x_{N0} & x_{N1} & \dots & x_{ND} \end{pmatrix}$$

This is also called the **design matrix**.

Least Squares

- It is a standard approach in regressions to approximate the solution of problem.
- There are many least square methods:
 - 1. MLE (Maximum likelihood Estimation)
 - 2. MAP (Maximum A posteriori Probability)
 - 3. Analytical Solution
 - 4. Geometric Interpolation

5. ,...

Minimizing Error in LR

linear systems of equations: (i = 1, 2, 3, ..., N)

Minimizing LR Error

Given D, find $\underline{\mathbf{w}} \in \mathbb{R}^{d+1}$ to minimize $E_{in}(\underline{\mathbf{w}})$

1. Analytic solution

2. Geometric solution

Reading: PRML 3.1.1, 3.1.2, 3.1.4