

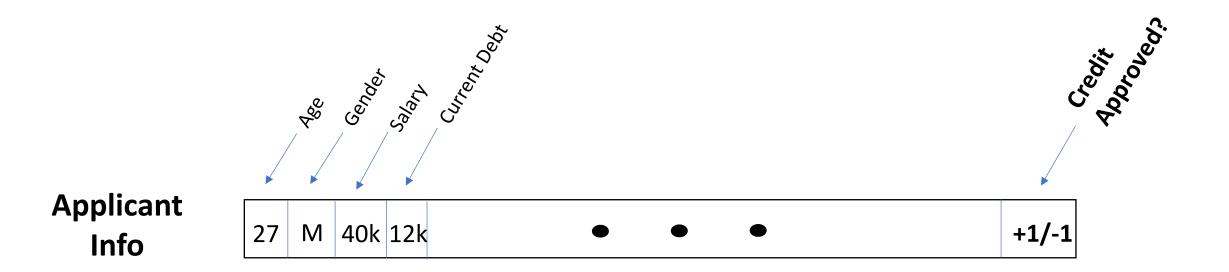
# Lecture 3: Linear Model & Regression

EECS4404/5327 Introduction to Machine Learning And Pattern Recognition

Amir Ashouri

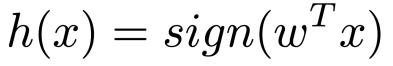
Fall 2019

#### Recap (1/4) Binary Linear Classification



#### Recap (2/4) Perceptron Learning Algorithm (PLA)

$$h(x) = \operatorname{sign}(\sum_{i=0}^{D} \mathbf{w_i x_i})$$



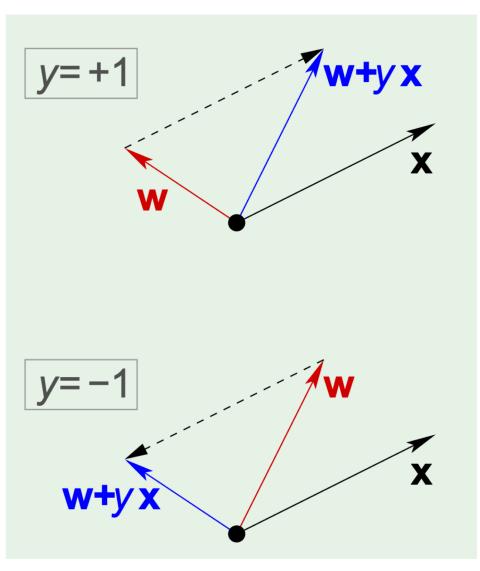


## Recap (3/4) Misclassifications and updates

In a binary linear classification, there are two possibilities:

 $sign(w^T x_i) \neq y_i$ 

**1**. 
$$y_i = +1$$
 for a  $t_i = -1$   
**2**.  $y_i = -1$  for a  $t_i = +1$ 



## Recap (4/4) PLA Algorithm

Input:  $D = ((x_1, t_1), ..., (x_N, t_N))$ Initialize:  $w^1 = 0$ 

For 
$$t = 1, 2, ...$$
:

If there exits an *i* with  $y_i \langle \mathbf{w}, \mathbf{x}_i \rangle \leq 0$  (a misclassified point) then update:  $\mathbf{w}^{y+1} = \mathbf{w}^y + y_i \mathbf{x}_i$ 

**Output:**  $w^{y}$ 

Good tool to visualize PLA:

https://lecture-demo.ira.uka.de/neural-network-demo/?preset=Rosenblatt%20Perceptron

Outline Lecture 3

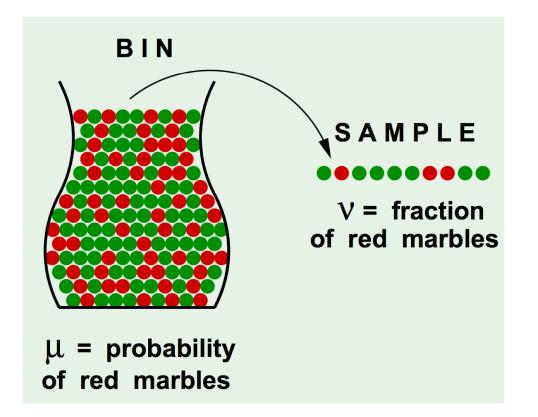
- Learning Notion
- Input Representation
- Pocket Algorithm
- Linear Regression (LR)
- Nonlinear Transformation

#### Feasibility of Learning A Bin of Marbles

 $\mathbb{P}$  [picking a **red** marble] =  $\mu$  $\mathbb{P}$  [picking a **green** marble] =  $1 - \mu$ 

The value of  $\mu$  is <u>unknown</u>.

Experiment: We pick N marbles independently. The fraction of Red marbles in sample =  $\vartheta$ 



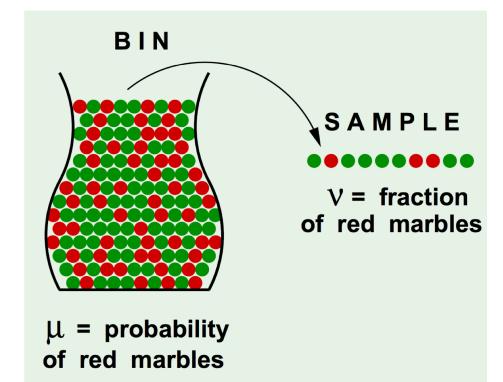
### Relation Between $\mu$ and $\vartheta$

#### **Question 1**

- Does  $\vartheta$  say anything about  $\mu$  ?
  - NO, Samples can be mostly red while the bin was mostly green
  - However, the sample frequency of these two are likely close to each other.

#### **Question 2**

- What does  $\vartheta$  say about  $\mu$  ?
  - In a big sample (large **N**),  $\vartheta$  is probably close to  $\mu$  within a margin ( $\varepsilon$ )



## Hoeffding's Inequality<sup>[1]</sup>

[1] Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables. *Journal of the American statistical association*, *58*(301), 13-30.

In a big sample (large N),  $\vartheta$  is probably close to  $\mu$  within  $\varepsilon$ 

 $\mathbb{P}[|\mathcal{D}-\mathcal{M}| > \in ] \leq 2e^{-2e^2N}$ 

In other word, the statement " $\mu = \vartheta$ " is **P.A.C** Robatty Gravinski Correct

ECE421/1513 - Amir Ashouri - 2019

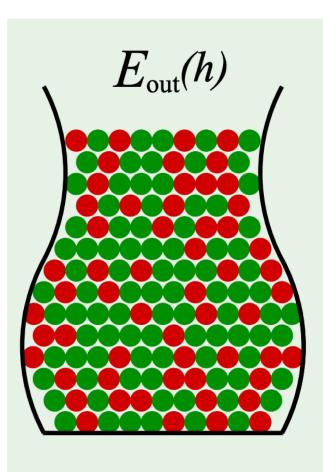
#### Notation for Learning

Both  $\mu$  and  $\vartheta$  depend on which hypothesis (h)

Dis in sample Ein (h) Mis out of sample Fout (h)

Thus, Hoeffding inequality becomes:

 $P\left[\left|E_{in}(h)-E_{sut}(h)\right| > \epsilon\right] \leq 2e^{-2\epsilon N}$ 





#### MNIST Dataset<sup>[1]</sup>

#### SVHN Dataset<sup>[2]</sup>



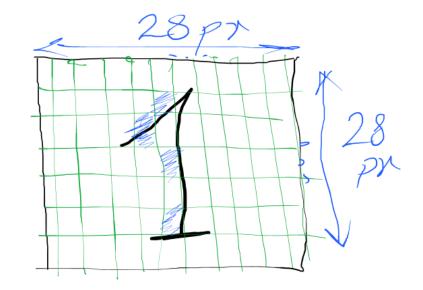


[1] LeCun, Yann. "The MNIST database of handwritten digits." http://yann. lecun. com/exdb/mnist/ (1998).
 [2] http://ufldl.stanford.edu/housenumbers/ Amir Ashouri - EECS4404/5327 - Fall 2019

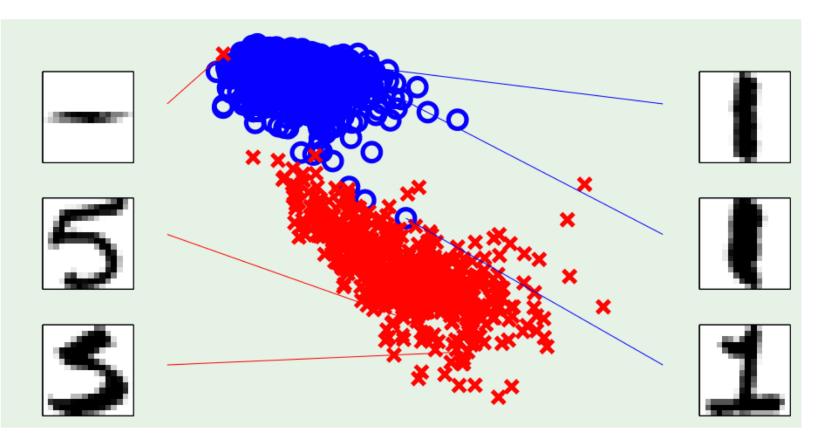
#### Representation

- Input
  - Each image is a 28\*28 pixel
  - $X = (x_0, x_1, x_2, ..., x_{784})$
- Model
  - Linear Model weights: (w<sub>0</sub>,w<sub>1</sub>,...,w<sub>784</sub>)
- Features
  - Downsizing the large vector of input:
    - Capturing only certain metrics instead of the raw data(e.g., *intensity*, *symmetry* (vertical, horizontal, diagonal), *sharpness*, etc.)

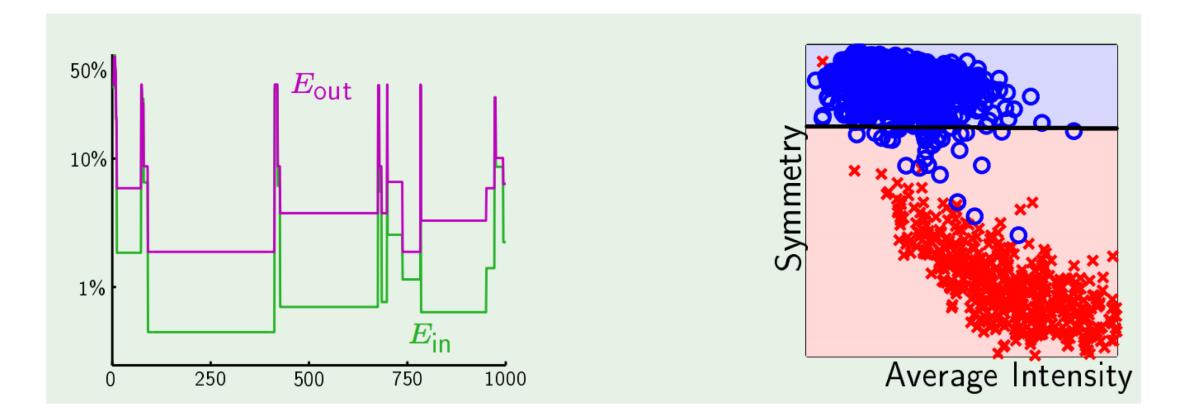
linear model: 
$$(x_0, x_1, x_2)$$



Representation (2) Case of 1's vs. 5's

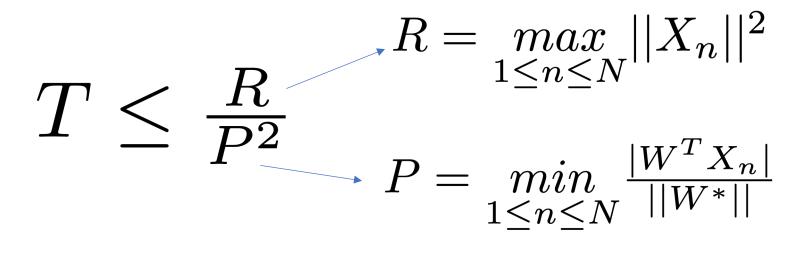


## Applying PLA



#### Rosenblatt Theorem (1957)

Let  $w^*$  be the output of the PLA on a linearly separable dataset D. The PLA terminates in almost:



R: Radius of dataset P: Distance of D to the decision boundary w\* = margin

#### Pocket Algorithm

It is helpful when our  $D = \{(x_1, y_1), ..., (x_n, y_n)\}$  is **not** linearly separable. Since PLA is not guaranteed to terminate.

Pocket algorithm, keep the "best weight vector" found up to iteration t in the pocket. It only replaces it if a better weight vector was found.

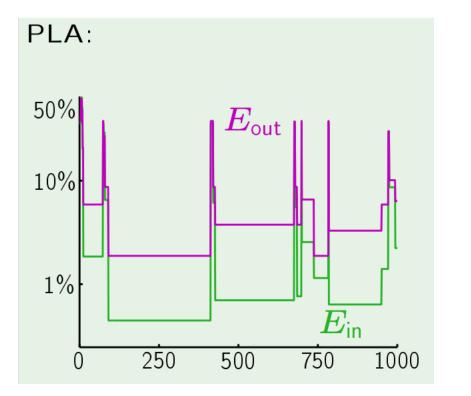
#### Pocket Algorithm Steps

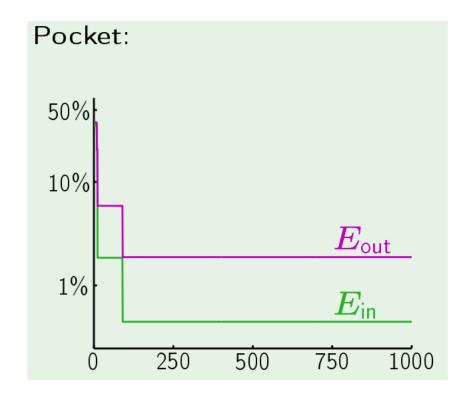
1) Set the pocket weight vector  $(\underline{\hat{w}})$  to  $\underline{w}(0)$  of PLA 2) For t = 0, 1, 2, ..., t-1 do:

- Run PLA for one update to get  $\underline{\mathbf{w}}(t+1)$
- Evaluate  $E_{in}(\underline{w}(t+1))$
- If  $E_{in}(\underline{w}(t+1)) \leq E_{in}(\underline{w}) \Rightarrow \underline{\hat{w}} = \underline{w}(t+1)$
- 3) Return  $\underline{\hat{w}}$  at the end

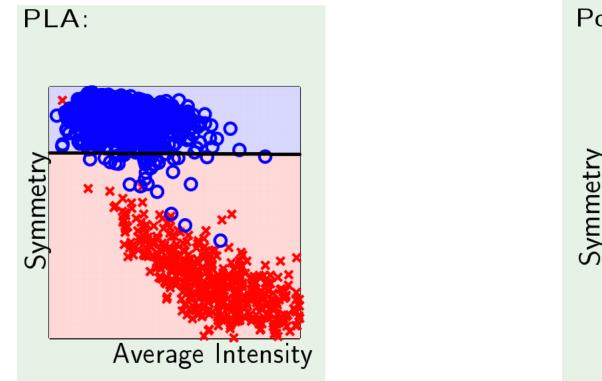
#### The Pocket Algorithm

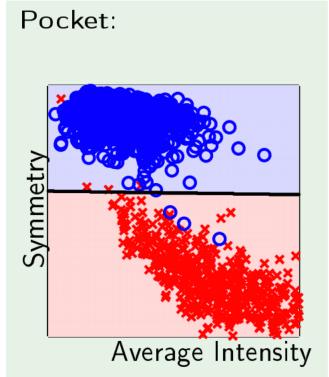
The algorithm saves the best found result until a better result is reached:

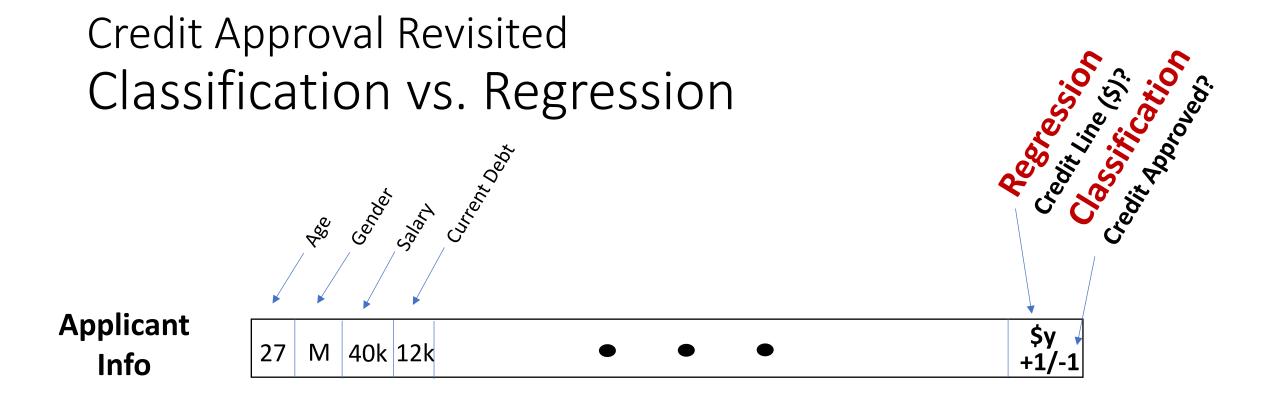




#### The Pocket Algorithm(2) Classification Comparison







#### Input

Each Customer Representative Features (Age, Salary, etc.)

$$X = (x_0, x_1, x_2, ..., x_d)$$

Linear Regression Output:

$$h(\mathbf{x}) = \sum_{i=0}^d w_i \ x_i = \mathbf{w}^{{\scriptscriptstyle\mathsf{T}}} \mathbf{x}$$

#### Example #2 Exam Marks

Say we want to predict the mark on the exam of a student in this class. For a student, we collect the following "measurements":

- x1 = number of hours they studied
- x2 = number of hours of sleep
- x3 =age
- x4 = height
- x5 = amount of alcohol consumed
- Our homegrown predictor:

mark on exam = b + 1  $\cdot x_1 + .2x_2 + 0 \cdot x_3 + 0 \cdot x_4 + (-2) \cdot x_5$ 

Will is work well on unseen data?

## LR Formalization

Training Set 
$$D = \{(x_1, y_1), \dots, (x_N, y_N)\}$$
  
 $x_i \in \mathbb{R}^d, y_i \in \mathbb{R}$ 

Prediction Function 
$$\hat{y} = h(\underline{\mathbf{x}})$$

Linear Model

$$(\underline{\mathbf{x}}) = w_0 + w_1 x_1 + \dots + w_d x_d)$$
$$\underline{\mathbf{w}} = (w_0, w_1, \dots, w_d) = \sum_{i=0}^d w_i x_i \quad (x_0 = 1)$$
$$\underline{\mathbf{x}} = (x_0, x_1, \dots, x_d) = \underline{\mathbf{w}}^T \underline{\mathbf{x}}$$

#### Square Error vs. Absolute Error

- Square error provides better properties:
- 1. If X is a <u>random variable</u> (e.g., toss a coin), the estimator that minimizes the square error is <u>mean</u>, whereas <u>median</u> for absolute error.

If mean  $\rightarrow E(X+Y) = E(X) + E(Y)$ If median  $\rightarrow E(X+Y) = ! E(X) + E(Y)$ 

2. If X is an independent variable (e.g., age, time, etc.):

If Sq.Err 
$$\rightarrow$$
 Var(X+Y) = Var(X) + Var(Y)  
If Abs.Err  $\rightarrow$  Var(X+Y) =! Var(X) + Var(Y)

See more info about random variables property:

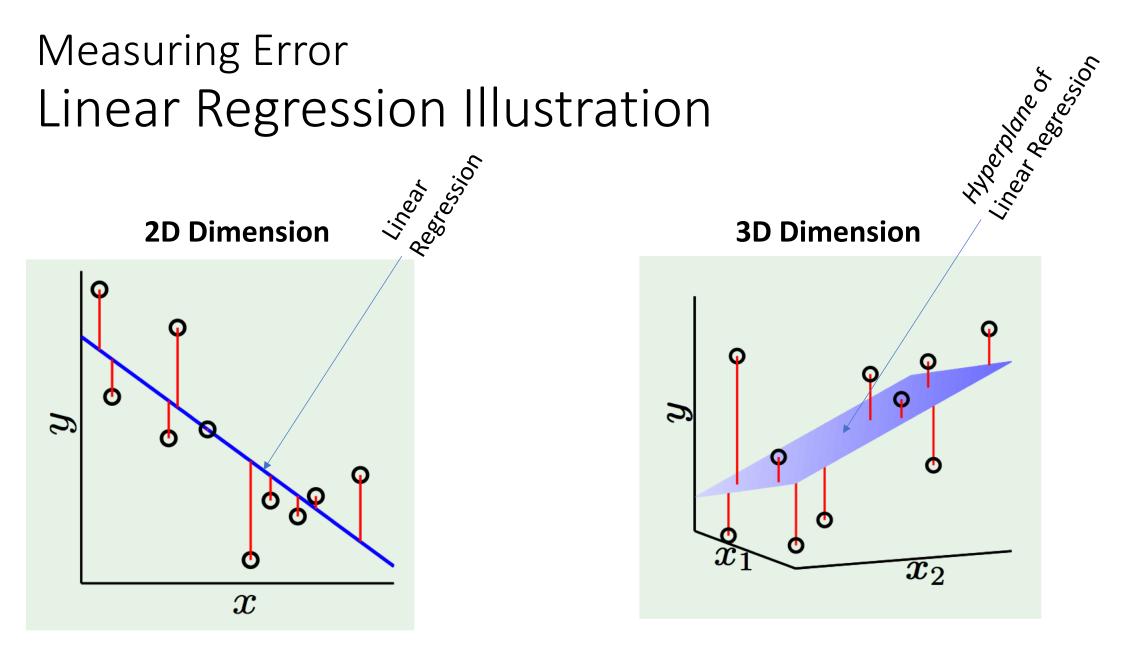
http://facweb.cs.depaul.edu/sjost/csc423/documents/rv-props.htm

#### LR Error Estimation

we need to compute average square error

$$E_m(\underline{\mathbf{w}}) = \frac{1}{N} \sum_{i=1}^{N} (\underbrace{y_i - \underline{\mathbf{w}}^T \underline{\mathbf{x}}_i}_{e_i(w)})^2$$

 $e_i(w) =$  squared error on ith training example



#### Example Linear Regression

x = advertising cost in one weeky = sales in one week

historical data D; d = 1

$$J(a|e)$$
  
 $J(x)$   
 $z z z$   
 $z z z$   
 $z z z z$ 

We need to fit a linear model:  $y = w_0 + w_1 x$  $w_0 = \text{sales when } x = 0$ 

 $w_1$  = increase in sales, for unit increase in cost

#### Refined Model

$$\underline{\mathbf{x}} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} \text{TV ads } (\$) \\ \text{radio ads } (\$) \\ \text{newspaper ads } (\$) \end{bmatrix}$$

 $y = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3$ <br/>largest  $w_i \Rightarrow \text{most profitable } x_i$ 

#### Design Matrix

To obtain a concise notation, we write the collection of data points as rows of a matrix:

$$\mathbf{X} = \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \dots \\ \mathbf{x}_N \end{pmatrix} = \begin{pmatrix} x_{10} & x_{11} & \dots & x_{1D} \\ x_{20} & x_{21} & \dots & x_{2D} \\ \dots \\ \dots \\ x_{N0} & x_{N1} & \dots & x_{ND} \end{pmatrix}$$

This is also called the **design matrix**.

#### Least Squares

- It is a standard approach in regressions to approximate the solution of problem.
- There are many least square methods:
  - 1. MLE (Maximum likelihood Estimation)
  - 2. MAP (Maximum A posteriori Probability)
  - 3. Analytical Solution
  - 4. Geometric Interpolation

5. ,...

#### Minimizing Error in LR

linear systems of equations: (i = 1, 2, 3, ..., N)

#### Minimizing LR Error

#### Given D, find $\underline{\mathbf{w}} \in \mathbb{R}^{d+1}$ to minimize $E_{in}(\underline{\mathbf{w}})$

1. Analytic solution

2. Geometric solution

#### Reading: PRML 3.1.1, 3.1.2, 3.1.4