
eecs4404/5327
Introduction to Machine Learning

and Pattern Recognition
Lecture 2 - Classification

Amir Ashouri

September 11, 2019



Recap of last class

Reading: UML Chapter 1: 1.1,1.2,1.3

2/32



Recap

Lesson 1:
Machine Learning can only work if “there is something we can
learn” Patterns must exist!
(Learning can not overcome inherent randomness in data
generation).

Lesson 2:
We need to have an idea what we are looking for
(→ inductive bias or prior knowledge)

Lesson 3:
We need to have data. No data, no learning!

3/32



Predicting tastiness of Papayas

Task:
Use machine learning to generate
a program that predicts whether
a papaya is tasty or not tasty.

4/32



Predicting tastiness of Papayas

Step 1 Choose feature
representation

Step 2 Choose class of predictors
Class H of hypotheses
h : X → Y

Step 3 Collect data
(x1, y1), . . . (xn, yn)

Step 4 Fit a model
Choose a predictor h from
the class that has minimal
empirical error
This is called Empirical Risk
Minimization

Step 5 Predict
y = h(x)

Feature space X ⊆ Rd

Label space Y = {−1, 1}

softness

color

5/32



Predicting tastiness of Papayas

Step 1 Choose feature
representation

Step 2 Choose class of predictors
Class H of hypotheses
h : X → Y

Step 3 Collect data
(x1, y1), . . . (xn, yn)

Step 4 Fit a model
Choose a predictor h from
the class that has minimal
empirical error
This is called Empirical Risk
Minimization

Step 5 Predict
y = h(x)

Feature space X ⊆ Rd

Label space Y = {−1, 1}

softness

color

5/32



Machine Learning Classes

1. Supervised Learning

2. Unsupervised Learning

3. Reinforcement Learning

6/32



Supervised Learning

Training data comprises examples of the input vectors
x1, . . . , xn ∈ X along with their corresponding target label Y
Examples:

• Medical Diagnosis X = list of symptoms Y ∈ {−1,+1}
• Hand-written digits X = image of digits Y ∈ {0, 1, 2, . . . , 9}
• Classifying coins X = (size, mass) of coins
Y ∈ {5c , 10c , 25c , 50c}

7/32



Supervised Learning

Training data comprises examples of the input vectors
x1, . . . , xn ∈ X along with their corresponding target label Y
Examples:

• Medical Diagnosis X = list of symptoms Y ∈ {−1,+1}
• Hand-written digits X = image of digits Y ∈ {0, 1, 2, . . . , 9}
• Classifying coins X = (size, mass) of coins
Y ∈ {5c , 10c , 25c , 50c}

7/32



Unsupervised Learning

What if we didn’t have the labels of our data? Training data
comprises examples of the ONLY input vectors x1, . . . , xn ∈ X
Examples:

• Reducing dimension of a data set
X = {(x1, y1), . . . , (x20, y100} to X ′ = {(x1, y1, . . . , {(x20, y5)}
• Clustering coins X using only their size and mass

8/32



Unsupervised Learning

What if we didn’t have the labels of our data? Training data
comprises examples of the ONLY input vectors x1, . . . , xn ∈ X
Examples:

• Reducing dimension of a data set
X = {(x1, y1), . . . , (x20, y100} to X ′ = {(x1, y1, . . . , {(x20, y5)}
• Clustering coins X using only their size and mass

8/32



Reinforcement Learning

We have the input training data and some sort of grading of the
data and yet no label.
Example:

• An agent learns to play a chess game

• A robot Learning to walk

Figure: Source: https://designrl.github.io

9/32



Classification

Reading: PRML, Intro to Chapter 4

10/32



Classification

We call a prediction problem a classification task, if the output
space is finite (as opposed to real-valued outputs as in regression).
That is, we have

Input/feature space: X ⊆ Rd .
Output/label space: Y = {1, 2, . . . , k} = [k]

→ binary classification if two possible outputs:

Output/label space: Y = {+1,−1} or Y = {0, 1}

11/32



Binary Classification

We want to predict with a (D-dimensional) linear function:

yw(x) = y(x,w) = b + w1x1 + w2x2 + . . .wDxD

yw(x) = h(x) = sign(
D∑
i=1

wixi − b)

• the wi are called “weights”
• b is called “bias” or “offset” or “threshold”

(nothing to do with statistical bias)

12/32



Binary Classification

We want to predict with a (D-dimensional) linear function:

yw(x) = y(x,w) = b + w1x1 + w2x2 + . . .wDxD

yw(x) = h(x) = sign(
D∑
i=1

wixi − b)

• the wi are called “weights”
• b is called “bias” or “offset” or “threshold”

(nothing to do with statistical bias)

12/32



Classification tasks examples

Examples of classification tasks are:

• Email spam detection Y = {+1,−1} = {spam, not spam}

• Medical diagnosis, eg Y = {+1,−1} = {diabetes, healthy}

• Papaya example Y = {+1,−1} = {tasty, not tasty}

• Image classification
Y = {1, 2, . . . , k} = {cat, dog, zebra, . . . , tiger}

• Text classification
Y = {1, 2, . . . , k} = {sports, news, arts, . . . , science}

13/32



Examples of classes of classifiers

A predictor h : X → Y is also called a classifier.

A set H of classifiers is called a hypothesis class.

Examples of hypothesis classes for classification are:

• Decision trees

• Rectangles (as in the papaya example)

• Neural networks (can be used for classification but also for
other tasks)

• Linear classifiers

14/32



Loss function for classification

We measure the quality of a predictor by means of a loss function

`(h, (x , y(predicted − label))) = 1[h(x) 6= t(true − label)]

15/32



Linear classification

Reading: PRML, Intro to Chapter 4

16/32



Linear classifiers

The class of linear classifiers is defined as:

H = {yw,b | w ∈ Rd , b ∈ R}

where
yw,b(x) = sign(〈w, x〉+ b) ∈ {+1,−1}

for x ∈ Rd .

17/32



Linear classifiers

A binary linear classifier yw,b : Rd → {+1,−1} maps one halfspace
of Rd to +1 and its complement to −1. The class of linear
classifiers is therefore also called halfspaces or halfspace classifiers.
The decision boundary is the hyperplane (subspace of dimension
d − 1, the subspace where 〈w, x〉 = 0) defining the two halfspaces.

18/32



Getting rid of b...

We can reduce classification with a linear classifier in Rd to
classification with homogeneous linear classifiers in Rd+1 via the
following identity:

yw,b(x) = sign(〈w, x〉+ b) = sign(〈w̃, x̃〉) =: yw̃(x̃)

where x̃ = (1, x) ∈ Rd+1 and w̃ = (b,w) ∈ Rd+1.
For binary classification, this is equal to

h(x) = sign(
D∑
i=1

wixi − b)

h(x) = sign(
d∑

i=0

wixi) = sign(wTx)

where w0 is an artificial coordinate, x0 = 1

19/32



Linearly separable data

A dataset D = ((x1, y1), . . . (xN , yN)) with xi ∈ Rd is called
(linearly) separable if there exists a vector w ∈ Rd with

hw(xi ) = yi

for all i ∈ [N].

Note that in vector space this is equivalent to

yi 〈w, xi 〉 > 0

for all i ∈ [N].

20/32



Linearly separable data

A dataset D = ((x1, y1), . . . (xN , yN)) with xi ∈ Rd is called
(linearly) separable if there exists a vector w ∈ Rd with

hw(xi ) = yi

for all i ∈ [N].

Note that in vector space this is equivalent to

yi 〈w, xi 〉 > 0

for all i ∈ [N].

20/32



Linearly separable data

21/32



Perceptron Learning Algorithm (PLA)

The perceptron algorithm is a simple, iterative procedure to find a
separating hyperplane to a dataset D = ((x1, t1), . . . (xN , tN)) if D
is separable.

That is, the perceptron algorithm implements the Empirical risk
minimization (ERM) rule for the class of linear classifiers if the
input data is linearly separable. The runtime of the perceptron

algorithm depends on “how separable” the data is: the larger the
margin, the faster the algorithm finds a separator.

22/32



Perceptron Learning Algorithm (PLA)

The perceptron algorithm is a simple, iterative procedure to find a
separating hyperplane to a dataset D = ((x1, t1), . . . (xN , tN)) if D
is separable.

That is, the perceptron algorithm implements the Empirical risk
minimization (ERM) rule for the class of linear classifiers if the
input data is linearly separable.

The runtime of the perceptron

algorithm depends on “how separable” the data is: the larger the
margin, the faster the algorithm finds a separator.

22/32



Perceptron Learning Algorithm (PLA)

The perceptron algorithm is a simple, iterative procedure to find a
separating hyperplane to a dataset D = ((x1, t1), . . . (xN , tN)) if D
is separable.

That is, the perceptron algorithm implements the Empirical risk
minimization (ERM) rule for the class of linear classifiers if the
input data is linearly separable. The runtime of the perceptron

algorithm depends on “how separable” the data is: the larger the
margin, the faster the algorithm finds a separator.

22/32



A Misclassified Point

In a binary linear classification, there are two possibilities:

sign(wT xi ) 6= yi

1. yi = +1 for a ti = −1

2. yi = −1 for a ti = +1

23/32



Perceptron Learning Algorithm (PLA)

Input: D = ((x1, t1), . . . (xN , tN))

Initialize: w1 = 0

For t = 1, 2, . . . :

If there exits an i with yi 〈w, xi 〉 ≤ 0 (a misclassified point)
then update: wy+1 = wy + yixi

Output: wy

24/32



PLA Update Rule

25/32



Perceptron Learning Algorithm (PLA)

Figure: Figure 4.7 from C. Bishop: PRML

26/32



Perceptron Learning Algorithm (PLA)

Figure: Figure 4.7 from C. Bishop: PRML

26/32



PLA

Figure: Figure 4.7 from C. Bishop: PRML

27/32



PLA

Figure: Figure 4.7 from C. Bishop: PRML

27/32



PLA

Figure: Figure 4.7 from C. Bishop: PRML

28/32



PLA

Figure: Figure 4.7 from C. Bishop: PRML

28/32



Margin of a dataset

We say that a dataset D = ((x1, t1), . . . (xN , tN)) with xi ∈ Rd is
called (linearly) separable with margin γ if there exists a vector
w ∈ Rd with

yw(xi ) = ti

and 〈
w

‖w‖
, x

〉
≥ γ

for all i ∈ [N].

29/32



Perceptron Learning Algorithm (PLA)

We have the following runtime guarantee:

Theorem

Let the input data D = ((x1, t1), . . . (xN , tN)) be separable with
margin γ. Then the perceptron algorithm stops after at most

R2

γ2

updates (and outputs a separating hyperplane), where
R = max{‖xi‖ | (xi , ti ) ∈ D} is the maximum norm of an input
data point.

30/32



Perceptron Learning Algorithm (PLA)
comment on runtime guarantee

The runtime guarantee is R2

γ2 where γ is the margin of the data and R the
maximum norm of the datapoints. Note that the norm of the datapoints
is required here: otherwise, we may artificially inflate the margin of the
data by multiplying all input vectors xi with some large constant. This
would increase the margin. However, the data is still “essentially the
same” (just stretched) and we should not expect the learning algorithm
to run faster due to this stretch. The factor R2 in the nominator of the
bound reflects this. If we stretch the data artificially, the bound R2

γ2

remains the same.

If we want to compare two datasets, we can normalize the input points so

that the maximum norm is 1 for both datasets. Comparing the margins

after this normalization then reflects the difficulty of the respective

datasets.

31/32



PLA summary

• Due to Frank Rosenblatt (1962), see story in PRML p193

• Very simple algorithm that works well if the data is actually
separable; the larger the margin, the faster it converges

• If the data is not separable, then one can define some
stopping criteria (but there is no guarantee of the quality of
the output)

• Is actually a gradient descent method (we will see this later)

32/32


