I ntractability

- Tractable and intractable problems
- What is a "reasonable" running time?
- NP problems, examples
- NP-complete problems and polynomial reducability
- There are many practically important problems that have not yielded algorithms with sub-exponential worst case running time even with years of effort.

Traveling Salesman Problem

- A traveling salesperson needs to visit n cities
- Is there a route of at most d length? (decision problem)
- Optimization-version asks to find a shortest cycle visiting all vertices once in a weighted graph

TSP Algorithms

- Naive solutions take n ! time in worst-case, where n is the number of edges of the graph
- No polynomial-time algorithms are known
- TSP is an NP-complete problem
- Longest Path problem between A and B in a weighted graph is also NP-complete
- Remember the running time for the shortest path problem

Reasonable vs. Unreasonable

- "Good", reasonable algorithms
- algorithms bound by a polynomial function n^{k}
- Tractable problems
- "Bad", unreasonable algorithms
- algorithms whose running time is above n^{k}
- Intractable problems

problems not admitting reasonable algorithms
problems admitting reasonable (polynomial-time) algorithms

Determining Truth (SAT)

- Determine the truth or falsity of logical sentences in a simple logical formalism called propositional calculus
- Using the logical connectives (\&-and, v-or, ~not, \rightarrow-implies) we compose expressions such as the following

$$
\sim(\mathrm{E} \rightarrow \mathrm{~F}) \&(\mathrm{~F} \vee(\mathrm{D} \rightarrow \sim \mathrm{E}))
$$

- The algorithmic problem calls for determining the satisfiability of such sentences
- e.g., $E=$ true, D and $F=$ false

Determining Truth (SAT)

- Exponential time algorithm on $n=$ the number of distinct elementary assertions ($\Theta\left(2^{n}\right)$) Best known solution, problem is in NP-complete class!

CLI QUE

- Given n people and their pairwise relationships, is there a group of s people such that every pair in the group knows each other
- people: a, b, c, ..., k
- friendships: (a,e), (a,f),...
- clique size: $\mathrm{s}=4$?
- YES, $\{b, d, i, h\}$ is a certificate!

Friendship Graph

Defining Problem (Complexity) Classes

- P: class of tractable problems
- ??: class of intractable problems
- NP is not this class!
- NP does NOT stand for "nonpolynomial"!
- Defined in terms of Turing Machines for ease of proving facts
- Definition of P:
- Set of all decision problems solvable in polynomial time on a deterministic Turing machine
- Examples:
- SHORTEST PATH: Is the shortest path between u and v in a graph shorter than k ?
- RELPRIME: Are the integers x and y relatively prime?
- YES: $(x, y)=(34,39)$.
- MEDIAN: Given integers x_{1}, \ldots, x_{n}, is the median value < M?
- YES: $\left(M, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=(17,2,5,17,22,104)$

P(2)

- P is the set of all decision problems solvable in polynomial time on REAL computers.
- Definition of NP:
- Set of all decision problems solvable in polynomial time on a NONDETERMINISTIC Turing machine
- Definition important because it links many fundamental problems
- Useful alternative definition
- Set of all decision problems with efficient verification algorithms
- efficient = polynomial number of steps on deterministic TM
- Verifier: algorithm for decision problem with extra input

On Magic Coins and Oracles

- Assume we use a magic coin in the backtracking algorithm
- whenever it is possible to extend a partial solutions in > 1 ways, we toss a magic coin (next city, next truth assignment, etc.)
- the outcome of this "act" determines further actions we use magical insight, supernatural powers!
- Such algorithms are termed "non-deterministic"
- they guess which option is better, rather than employing some deterministic procedure to go through the alternatives

NP (2)

- NP = set of decision problems with efficient verification algorithms
- Why doesn't this imply that all problems in NP can be solved efficiently?
- BIG PROBLEM: need to know certificate ahead of time
- real computers can simulate by guessing all possible certificates and verifying
- naïve simulation takes exponential time unless you get "lucky"

NP-Completeness

- Informal definition of NP-hard:
- A problem with the property that if it can be solved efficiently, then it can be used as a subroutine to solve any other problem in NP efficiently
- NP-complete problems are NP problems that are NP-hard
- "Hardest computational problems" in NP

The Main Question

- Does $\mathrm{P}=\mathrm{NP}$?
- Is the original DECISION problem as easy as VERIFICATION?
- Most important open problem in theoretical computer science. Clay institute of mathematics offers one-million dolar prize!

If $\mathbf{P} \neq \mathbf{N}$

$$
\text { If } P=N P
$$

What is NP-completeness?

- Intuition
- Formal definition
- Strategy:
- Prove one problem NP-complete
- Prove that other problems are equivalent

Short Certificates

- To find a solution for an NPC problem, we seem to be required to try out exponential amounts of partial solutions
- Failing in extending a partial solution requires backtracking
- However, once we found a solution, convincing someone of it is easy, if we keep a proof, i.e., a certificate
- The problem is finding an answer (exponential), but not verifying a potential solution (polynomial)

Short Certificates (2)

Verifier:

1. Check that x and c describe same map.
2. Count number of distinct colors in \mathbf{c}.
3. Check all pairs of adjacent states.

x is a YES instance

no conclusion

The $P=N P$? Question

- If $P=N P$, then:
- Efficient algorithms for 3- COLOR, TSP, and factoring.
- Cryptography is impossible on conventional machines
- Modern banking systems will collapse
- If no, then:
- Can't hope to write efficient algorithm for TSP
- see NP- completeness
- But maybe efficient algorithm still exists for testing the primality of a number - i.e., there are some problems that are NP, but not NP-complete

The $P=N P$? Question (2)

- Probably no, since:
- Thousands of researchers have spent four decades in search of polynomial algorithms for many fundamental NP-complete problems without success
- Consensus opinion: $\mathrm{P} \neq \mathrm{NP}$
- But maybe yes, since:
- No success in proving $P \neq$ NP either

Dealing with NP-Completeness

- Hope that a worst case doesn't occur
- Complexity theory deals with worst case behavior. The instance(s) you want to solve may be "easy"
- TSP where all points are on a line or circle
- 13,509 US city TSP problem solved (Cook et. al., 1998)
- Change the problem
- Develop a heuristic, and hope it produces a good solution.
- Design an approximation algorithm: algorithm that is guaranteed to find a high- quality solution in polynomial time
- active area of research, but not always possible
- Keep trying to prove $\mathrm{P}=\mathrm{NP}$.

The Big Picture

- It is not known whether NP problems are tractable or intractable
- But, there exist provably intractable problems
- Even worse - there exist problems with running times far worse than exponential!
- More bad news: there are provably noncomputable (undecidable) problems
- There are no (and there will not ever be!!!) algorithms to solve these problems

Proving NP-completeness: the start...

- The World's first NP-complete problem
- SAT is NP-complete (Cook-Levin, 196x)

Proving NP-Completeness (2)

- Each NPC problem's faith is tightly coupled to all the others (complete set of problems)
- Finding a polynomial time algorithm for one NPC problem would automatically yield a polynomial time algorithm for all NP problems
- Proving that one NP-complete problem has an exponential lower bound woud automatically proove that all other NP-complete problems have exponential lower bounds

NP-Completeness (3)

- How can we prove such a statement?
- Polynomial time reduction!
- given two problems
- it is an algorithm running in polynomial time that reduces one problem to the other such that
- given input X to the first and asking for a yes/no answer
- we transform X into input Y to the second problem such that its answer matches the answer of the first problem

Reduction Example

- Reduction is a general technique for showing that one problem is harder (easier) than another
- For problems A and B, we can often show: if A can be solved efficiently, then so can B
- In this case, we say B reduces to A (B is "easier" than A, or, B cannot be "worse" than A)

Reduction Example (2)

- SAT reduces to CLIQUE
- Given any input to SAT, we create a corresponding input to CLIQUE that will help us solve the original SAT problem
- Specifically, for a SAT formula with K clauses, we construct a CLIQUE input that has a clique of size K if and only if the original Boolean formula is satisfiable
- If we had an efficient algorithm for CLIQUE, we could apply our transformation, solve the associated CLIQUE problem, and obtain the yes/no answer for the original SAT problem

Reduction Example (3)

- SAT reduces to CLIQUE
- Associate a person to each variable occurrence in each clause
first clause

(x) (y z

Reduction Example (4)

- SAT reduces to CLIQUE
- Associate a person to each variable occurrence in each clause
- "Two people" know each other except if:
- they come from the same clause
- they represent t and t' for some variable t

Reduction Example (5)

- SAT reduces to CLIQUE
- Two people know each other except if:
- they come from the same clause
- they represent t and t' for some variable t
- Clique of size $4 \Rightarrow$ satisfiable assignment
- set variable in clique to "true"
- $(x, y, z)=$ (true, true, false)

Reduction Example (6)

- SAT reduces to CLIQUE
- Two people know each other except if:
- they come from the same clause
- they represent t and t' for some variable t
- Clique of size $4 \Rightarrow$ satisfiable assignment
- Satisfiable assignment \Rightarrow clique of size 4
- $(x, y, z)=$ (false, false, true)
- choose one true literal from each clause

CLI QUE is NP-complete

- CLIQUE is NP-complete
- CLIQUE is in NP
- SAT is in NP-complete
- SAT reduces to CLIQUE
- Hundreds of problems can be shown to be NP-complete that way...

Summary

- Thousands of problems have been proved to be NP-complete
- "at least as hard as any other problem in NP"
- If you find a polynomial time solution to any NPcomplete problem, $\mathrm{P}=\mathrm{NP}$
- They are believed to be intractable (i.e., no polynomial time algorithms exist)
- Since this has not been proved, it is possible that $\mathrm{P}=\mathrm{NP}$.
- In real life one looks for an approximation algorithm or a different problem formulation...

