
EECS 3101M F 19

EECS 3101 A: Design and Analysis of

Algorithms

Suprakash Datta
Office: LAS 3043

Course page: http://www.eecs.yorku.ca/course/3101A
Also on Moodle

http://www.eecs.yorku.ca/course/3101A

EECS 3101M F 19

More Sorting Algorithms

Sorting Algorithms

Searching in databases: we can do binary search on
sorted data

A large number of computer graphics and computational
geometry problems Closest pair, element uniqueness

A large number of sorting algorithms are developed
representing different algorithm design techniques.

A lower bound for sorting Ω(n log n) is used to prove
lower bounds of other problems.

EECS 3101M F 19

More Sorting Algorithms

Sorting Algorithms - 2

Insertion Sort: Worst-case running time Θ(n2); in-place

Selection Sort
for i = n downto 2
A: Find the largest element among A[1..i]
B: Exchange it with A[i]
Running time: Θ(n2), in place

Merge Sort: Worst-case running time Θ(n log n), but
needs Θ(n) additional memory (WHY?)

Idea for improvement: use a data structure, to do both A
and B in O(lg n) time, balancing the work, achieving a better
trade-off, and a total running time O(n log n).

EECS 3101M F 19

Heap Sort

Heap Sort

Binary Max-Heap:

A simple linear array

Can be viewed as a nearly complete binary tree; All levels,
except the lowest one are completely filled

Two attributes: length(A), heapSize(A)

Max-Heap property: The key in root is greater or equal
than all its children, and the left and right subtrees are
again binary heaps

Insertion, Deletion, Extract-max all take O(log n) time

EECS 3101M F 19

Heap Sort

Max Heaps

Parent(i): bi/2c

LeftChild(i): 2i

RightChild(i): 2i + 1

EECS 3101M F 19

Heap Sort

Building Heaps - Part 1

Problem: Left, right subtrees are heaps, root violates heap
property

EECS 3101M F 19

Heap Sort

Heapify - Correctness

Use induction on the height of the tree

Base Case: h = 1

Inductive Step: The root is exchanged with a node that is
the largest among its descendants. The unaffected
subtree is a heap. Inductively the other subtree is
heapified.

EECS 3101M F 19

Heap Sort

Heapify - Running Time

How large can a subtree be (in terms of number of
nodes)?
Claim: ≤ 2n/3

T (n) ≤ T (2n/3) + Θ(1)

T (n) = O(log n) (WHY?)

Alternatively, in the worst case one execution per level....
O(log n) time

EECS 3101M F 19

Heap Sort

Building Heaps - Part 2

Problem: Given any array A[1..n], convert it to a heap

Elements in the subarray A[(bn/2c+ 1)...n] are already
1-element heaps because they are leaf nodes

Correctness: strong induction on i

all trees rooted at m > i are heaps, so heapify makes the
subtree rooted at element i a heap

Notice the reversal in direction of the induction

EECS 3101M F 19

Heap Sort

BuildHeap - Analysis

Running time (less than n calls to Heapify):
≤ nO(lg n) = O(n lg n)

Good enough for an O(n lg n) bound on Heapsort, but
sometimes we build heaps for other reasons, would be
nice to have a tight bound

Intuition: for most of the time Heapify works on smaller
than n element heaps

EECS 3101M F 19

Heap Sort

BuildHeap - Tighter analysis

Idea: Heapify runs in O(h) time, where h is the height of
a node

How many nodes are there at height h?
Answer: 2dlg ne−h

Assume a complete binary tree. Then the running time is

blg nc∑
h=1

h2dlg ne−h = 2dlg ne
blg nc∑
h=1

h2−h

Claim:
∑blg nc

h=1 h2−h = Θ(1), and so running time of
BuildHeap is O(n)

EECS 3101M F 19

Heap Sort

BuildHeap - Proof of Claim

∞∑
h=1

xh =
1

1− x
if |x | < 1

∞∑
h=1

hxh−1 =
1

(1− x)2
after differentiation wrt x

∞∑
h=1

hxh =
x

(1− x)2
multiplying by x

∞∑
h=1

h2−h =
1
2

(1− 1
2
)2

substituting x =
1

2

= 2

Therefore the finite sum is Θ(1).

EECS 3101M F 19

Heap Sort

HeapSort

The total running time of heap sort is O(n lg n) +
Build-Heap(A) time, which is O(n), total O(n lg n)

EECS 3101M F 19

Heap Sort

HeapSort: Correctness

LI: Before iteration i , A[i + 1..n] consists of the n − i numbers
originally in A but in sorted order and A[1..i] is a heap, and
consists of the rest of the numbers originally in A

Initialization: Because we proved BuildHeap correct, after
line 1, A[1..n] is a valid heap

Maintenance: in iteration i the max is exchanged with
the last element of the heap and the heap length is
shortened by 1.
So A[i ..n] consists of the n − i + 1 numbers originally in
A but in sorted order.
Meanwhile, in A[1..i − 1] the preconditions for Heapify
are met – only the root violates the heap property.
So heapify makes A[1..i − 1] a heap again

EECS 3101M F 19

Heap Sort

HeapSort: Correctness - 2

LI: Before iteration i , A[i + 1..n] consists of the n − i numbers
originally in A but in sorted order and A[1..i] is a heap, and
consists of the rest of the numbers originally in A

Termination: The loop terminates at i = 1.

Plugging i = 1 in the LI we get A[2..n] consists of the
n − 1 numbers originally in A but in sorted order and
A[1..1] is a heap, and consists of the rest of the numbers
originally in A

This implies that the array is sorted

EECS 3101M F 19

Heap Sort

HeapSort: Observations

Heap sort uses a heap data structure to improve selection
sort and make the running time asymptotically optimal

Running time is O(n log n) – like merge sort, but unlike
selection, insertion, or bubble sorts

Sorts in place – like insertion, selection or bubble sorts,
but unlike merge sort

EECS 3101M F 19

QuickSort

QuickSort

Characteristics

sorts in place, i.e., does not require an additional array,
like insertion sort

Divide-and-conquer, like merge sort

very practical, average sort performance O(n log n) (with
small constant factors), but worst case Θ(n2)

CAVEAT: this is true for the CLRS version

EECS 3101M F 19

QuickSort

QuickSort: Strategy

Divide-and-conquer

Divide: partition array into 2 subarrays such that
elements in the lower part ≤ elements in the higher part

Conquer: recursively sort the 2 subarrays

Combine: trivial since sorting is done in place

EECS 3101M F 19

QuickSort

QuickSort: Algorithm

EECS 3101M F 19

QuickSort

QuickSort: Correctness

Prove Partition correct using loop invariants

Use induction to prove QuickSort correct

EECS 3101M F 19

QuickSort

QuickSort: Analysis

Assume that all input elements are distinct

The running time depends on the distribution of splits

Best case: Partition always splits the array evenly.
T (n) = 2T (n/2) + Θ(n), implying T (n) = Θ(n log n)
using Case 2 of the Master Theorem

Worst case: One side of the Partition has only one
element.
T (n) = T (1) + T (n − 1) + Θ(n) = T (n − 1) + Θ(n).
So T (n) =

∑n
i=1 Θ(i) = Θ(n2)

EECS 3101M F 19

QuickSort

QuickSort: Worst case

When does the worst case appear?

When the input is sorted!

The running time depends on the distribution of splits

Same recurrence for the worst case of insertion sort

However, sorted input yields the best case for insertion
sort!

EECS 3101M F 19

QuickSort

Randomized QuickSort: Intuition

Suppose the split is 1/10 : 9/10

T (n) = T (n/10) + T (9n/10) + Θ(n), so
T (n) = Θ(n log n)

How can we make sure that we are usually lucky?
Partition around a random element (works well in
practice)

Randomized algorithms

running time is independent of the input ordering
no specific input triggers worst-case behavior
the worst-case is only determined by the output of the
random-number generator

EECS 3101M F 19

QuickSort

Randomized QuickSort: Steps

Assume all elements are distinct

Partition around a random element

Randomization is a general tool to improve algorithms
with bad worst-case but good average-case complexity

	More Sorting Algorithms
	Heap Sort
	QuickSort

