EECS 3101M F 19

EECS 3101 A: Design and Analysis of
Algorithms

Suprakash Datta
Office: LAS 3043

Course page: http://www.eecs.yorku.ca/course/3101A
Also on Moodle

http://www.eecs.yorku.ca/course/3101A

EECS 3101M F 19

More Sorting Algorithms

Sorting Algorithms
@ Searching in databases: we can do binary search on
sorted data

@ A large number of computer graphics and computational
geometry problems Closest pair, element uniqueness

@ A large number of sorting algorithms are developed
representing different algorithm design techniques.

@ A lower bound for sorting Q(nlog n) is used to prove
lower bounds of other problems.

EECS 3101M F 19

Sorting Algorithms - 2

e Insertion Sort: Worst-case running time ©(n?); in-place

@ Selection Sort
for i = n downto 2
A: Find the largest element among A[1..1]
B: Exchange it with A/
Running time: ©(n?), in place

@ Merge Sort: Worst-case running time ©(nlog n), but
needs ©(n) additional memory (WHY?)
Idea for improvement: use a data structure, to do both A
and B in O(lg n) time, balancing the work, achieving a better
trade-off, and a total running time O(nlog n).

EECS 3101M F 19

Heap Sort

Binary Max-Heap:

@ A simple linear array

@ Can be viewed as a nearly complete binary tree; All levels,
except the lowest one are completely filled

e Two attributes: length(A), heapSize(A)

@ Max-Heap property: The key in root is greater or equal
than all its children, and the left and right subtrees are
again binary heaps

@ Insertion, Deletion, Extract-max all take O(log n) time

EECS 3101M F 19

Max Heaps

Parent(i): |i/2]
LeftChild(i): 2i

RightChild(/): 2i + 1

EECS 3101M F 19

Building Heaps - Part 1

Problem: Left, right subtrees are heaps, root violates heap
property

n is total number of elements
HEAPIFY(A,)

1 > Left & Right subtrees of 7 are heaps.
2 I> Makes subtree rooted at 7 a heap.
3 [+ LEFT(7) >1=2i

4 r < RIGHT(7) >r=2i+1

5 if I < nand A[l] > A[{]

6 then largest <[

7 else largest <1

8 if r < n and Alr] > Allargest]

9 then largest < r
10 if largest # i

11 then exchange A[i] <> Allargest]
12 HEAPIFY(A, largest)

EECS 3101M F 19

Heapify - Correctness

@ Use induction on the height of the tree

@ Base Case: h=1

@ Inductive Step: The root is exchanged with a node that is
the largest among its descendants. The unaffected
subtree is a heap. Inductively the other subtree is

heapified.

EECS 3101M F 19

Heapify - Running Time

@ How large can a subtree be (in terms of number of
nodes)?
Claim: <2n/3

e T(n) < T(2n/3)+©(1)
e T(n) = O(logn) (WHY?)

@ Alternatively, in the worst case one execution per level....
O(log n) time

EECS 3101M F 19

Building Heaps - Part 2

Problem: Given any array A[1..n], convert it to a heap

BuiLD-HEAP(A)
Lfor i < |n/2] downto 1
2 do HEAPIFY(A, 1)

@ Elements in the subarray A[(|n/2]| + 1)...n] are already
1-element heaps because they are leaf nodes

@ Correctness: strong induction on |

@ all trees rooted at m > i are heaps, so heapify makes the
subtree rooted at element / a heap

@ Notice the reversal in direction of the induction

EECS 3101M F 19

BuildHeap - Analysis

@ Running time (less than n calls to Heapify):
< nO(lgn) = O(nlgn)

@ Good enough for an O(nlgn) bound on Heapsort, but
sometimes we build heaps for other reasons, would be
nice to have a tight bound

@ Intuition: for most of the time Heapify works on smaller
than n element heaps

EECS 3101M F 19

BuildHeap - Tighter analysis

o Idea: Heapify runs in O(h) time, where h is the height of
a node

@ How many nodes are there at height h?
Answer: 2flen=h

@ Assume a complete binary tree. Then the running time is

llgn] llgn]

Z h2]'|gn'|—h _ 2[Ign] Z h2—h
h=1 h=1

o Claim: 3187 p2=h — ©(1), and so running time of
BuildHeap is O(n)

EECS 3101M F 19

BuildHeap - Proof of Claim

- 1
th = 1_Xif|x|<1
h=1

oo
Z hx'—1 = after differentiation wrt x
h=1

hx" = multiplying by x
1

\
[~
—

I x
x

e

1

5 1

2" = 2 5 substituting x = 5
1

>
I

M % =
Il
—~~
=t
|
N =
N—r

Therefore the finite sum is ©(1).

EECS 3101M F 19

HeapSort
HEAPSORT(A) Analysis
1BuiLD-HEAP(A) 7?
2for 7 +— n downto 2 n times
3 do exchange A[1] <> A[i] O(1)
4 n<n-—1 O(1)
5 HEAPIFY(A, 1) O(lgn)

The total running time of heap sort is O(nlgn) +
Build-Heap(A) time, which is O(n), total O(nlg n)

EECS 3101M F 19

HeapSort: Correctness

LI: Before iteration i, A[i + 1..n] consists of the n — i numbers
originally in A but in sorted order and A[L../] is a heap, and
consists of the rest of the numbers originally in A

@ Initialization: Because we proved BuildHeap correct, after
line 1, A[1..n] is a valid heap

@ Maintenance: in iteration / the max is exchanged with
the last element of the heap and the heap length is
shortened by 1.
So A[i..n] consists of the n — i + 1 numbers originally in
A but in sorted order.
Meanwhile, in A[1..i — 1] the preconditions for Heapify
are met — only the root violates the heap property.
So heapify makes A[1..i — 1] a heap again

EECS 3101M F 19

HeapSort: Correctness - 2

LI: Before iteration i, A[i + 1..n] consists of the n — i numbers
originally in A but in sorted order and A[L../] is a heap, and
consists of the rest of the numbers originally in A

@ Termination: The loop terminates at / = 1.

@ Plugging i = 1 in the LI we get A[2..n] consists of the
n — 1 numbers originally in A but in sorted order and
A[1..1] is a heap, and consists of the rest of the numbers
originally in A

@ This implies that the array is sorted

EECS 3101M F 19

HeapSort: Observations

@ Heap sort uses a heap data structure to improve selection
sort and make the running time asymptotically optimal

@ Running time is O(nlog n) — like merge sort, but unlike
selection, insertion, or bubble sorts

@ Sorts in place — like insertion, selection or bubble sorts,
but unlike merge sort

EECS 3101M F 19

QuickSort

Characteristics
@ sorts in place, i.e., does not require an additional array,
like insertion sort

@ Divide-and-conquer, like merge sort

@ very practical, average sort performance O(nlog n) (with
small constant factors), but worst case ©(n?)

o CAVEAT: this is true for the CLRS version

EECS 3101M F 19

QuickSort: Strategy

Divide-and-conquer
@ Divide: partition array into 2 subarrays such that
elements in the lower part < elements in the higher part

@ Conquer: recursively sort the 2 subarrays

@ Combine: trivial since sorting is done in place

EECS 3101M F 19

QuickSort: Algorithm

Partition(A,p, r)

01 x«A[r]

02 i<p-1

03 j¢r+l

04 while TRUE

05 repeat j<«j-1

06 until A[]j] <x

07 repeat i«i+l

08 until A[i] >x

09 if i<

10 then exchange A[i]©A[]]

11 else return j
Quicksort (A,p,r)
01 if p<r
02 then g«Partition(a,p,r)
03 Quicksort (A,p,q)

04 Quicksort (A,g+l, r)

EECS 3101M F 19

QuickSort: Correctness

@ Prove Partition correct using loop invariants

@ Use induction to prove QuickSort correct

EECS 3101M F 19

QuickSort: Analysis

@ Assume that all input elements are distinct
@ The running time depends on the distribution of splits

@ Best case: Partition always splits the array evenly.
T(n) =2T(n/2) 4+ ©(n), implying T(n) = ©(nlog n)
using Case 2 of the Master Theorem

@ Worst case: One side of the PARTITION has only one
element.

Tn)=TQ)+ T(n—1)+0(n)=T(n—1)+ O(n).

So T(n) =32, 0(/) = ©(n°)

EECS 3101M F 19

QuickSort: Worst case

@ When does the worst case appear?

@ When the input is sorted!

@ The running time depends on the distribution of splits
@ Same recurrence for the worst case of insertion sort

@ However, sorted input yields the best case for insertion
sort!

EECS 3101M F 19

Randomized QuickSort: Intuition

@ Suppose the split is 1/10: 9/10

e T(n)= T(n/10) + T(9n/10) + ©(n), so
T(n) =©(nlogn)

@ How can we make sure that we are usually lucky?
Partition around a random element (works well in
practice)

@ Randomized algorithms
e running time is independent of the input ordering
e no specific input triggers worst-case behavior
e the worst-case is only determined by the output of the
random-number generator

EECS 3101M F 19

Randomized QuickSort: Steps

@ Assume all elements are distinct

@ Partition around a random element

@ Randomization is a general tool to improve algorithms
with bad worst-case but good average-case complexity

	More Sorting Algorithms
	Heap Sort
	QuickSort

