EECS 3101A F 19

EECS 3101 A: Design and Analysis of
Algorithms

Suprakash Datta
Office: LAS 3043

Course page: http://www.eecs.yorku.ca/course/3101A
Also on Moodle

http://www.eecs.yorku.ca/course/3101A

EECS 3101A F 19

Recurrences

Recurrences from Divide and Conquer algorithms

T(n) = time to solve trivial problem ifn=1
~ | aT(n/b) + time to divide + combine if n > 1

o(1) if n=1

E.g. Merge sort: T(n) = { 2T(n/2)+O(n) ifn>1

EECS 3101A F 19
Master Theorem

The Master Theorem

@ The idea is to solve a class of recurrences that have the

form
T(n)=aT(n/b) + f(n)

@ a>1and b>1, and f is asymptotically positive!

@ Abstractly speaking, T(n) is the runtime for an algorithm
and we know that

e a subproblems of size n/b are solved recursively, each in
time T(n/b)

o f(n) is the cost of dividing the problem and combining
the results. In merge-sort a = b =2, f(n) = ©(n)

EECS 3101A F 19

Master Theorem
The Master Theorem — 2

Sfin)

> fln)
/<L :

f(nib) S(nlb) f(nlb) ——— af(nib)

A AN AN

08, n S(nl b)Y f(nlb") /(n’/)) Sl /))/(n//)) f(n /

T T R

' i ‘
f ! i

b
I I 1 I 1 I 1 1 I 1 o, @
a(1) (1) 6(1) (1) (1) (1) (1) (1) (1) o) o) o1y o(,**)

log, a
n

log,n-1

Total: (-)(,,IU’E“") : z u’,/'(m‘hl)

j=0

Split problem into a parts at log, n levels. There
area'°8»" = nl°&» 3 leaves

Master Theore m

The Master Theorem — 3

T(n) = f(n)+aT (%)
= f(n)+af (g) +a°T (%)
= f(n)+af (g) +a*f (é) +aT (%)
— f(n)+ af (0) e (L
+a°%"T(1)
Thus s
T(n) = af (%)—l—@(n'g)

)

EECS 3101A F 19
Master Theorem

The Master Theorem: Intuition

log, n—1

T = 3 I (5:) +O(n=?)

@ The first term is a division /recombination cost (totaled
across all levels of the tree)

@ The second term is the cost of doing all n'°g»?
subproblems of size 1 (total of all work pushed to leaves)

@ Three common cases:
© Running time dominated by cost at leaves
@ Running time evenly distributed throughout the tree
© Running time dominated by cost at root

EECS 3101A F 19
Master Theorem

The Master Theorem: Intuition - 2

log, n—1

T(n) = Z a/f(g)+e(n'°gba)

@ Consequently, to solve the recurrence, we need only to
characterize the dominant term

@ In each case compare f(n) with O(n'°8>2)

EECS 3101A F 19
Master Theorem
The Master Theorem: Case 1

log, n—1

T(n) = Z a/f(g)+e(n'°gba)

o f(n) = O(n'e»2=¢) for some constant ¢ > 0: f(n) grows
polynomially (by factor n¢) slower than n'°€»?

@ The work at the leaf level dominates
o Summation of recursion-tree levels: O(n'°8»?)

o Cost of all the leaves O(n'°8s2)

o Thus, the overall cost is | T(n) = ©(n'°gs?)

EECS 3101A F 19
Master Theorem
The Master Theorem: Case 2

log, n—1
T(m) =Y f (%) +©(n'E?)
j=0
e f(n) = ©(n'"°&2): f(n) and n'°8:2 are asymptotically “the
same”
@ The work is distributed equally throughout the tree

@ Total cost: level cost x number of levels

@ Thus, the overall cost is| T(n) = ©(n'°e:?Ig n)

EECS 3101A F 19
Master Theorem
The Master Theorem: Case 3

log, n—1

T(n) = Z I (3) + (=)

o f(n) = Q(n'2") for some constant ¢ > 0: f(n) grows
polynomially (by factor n) faster than n'°e»?

@ The work the root dominates

@ Inverse of Case 1

@ Also need a regularity condition:

dc € (0,1),3ng > 0,Vn > ng, af(n/b) < cf(n)
@ Thus, the overall cost is | T(n) = ©(f(n))

EECS 3101A F 19
Master Theorem

The Master Theorem: Summary

T(n) =aT(n/b)+ f(n)
o f(n) = O(n'e27), ¢ > 0: T(n) = O(n'°ex?)
e f(n) = ©(n'"°&2): T(n) = O(n'"°8+2Ig n)
o f(n) = Q(n'82%€) ¢ > 0: T(n) = O(f(n))
Caveat: The master method cannot solve every recurrence of

this form; there is a gap between cases 1 and 2, as well as
cases 2 and 3

EECS 3101A F 19
Master Theorem

The Master Theorem: Examples

T(n)=aT(n/b)+ f(n)

@ Mergesort (a=2,b=2,f(n) =0O(n)). Case 2:
T(n) =0O(nlgn)

@ Binary Search (recursive): T(n) = T(n/2) + 1.
a=1b=2n"l =1 f(n)=1€0(1).
Case 2: T(n) = ©(lgn)

o Artificial example 1: T(n) =9T(n/3) + n.
a=9,b=3,f(n)=n¢e O(n),n"e°=n?
f(n) = O(n*~¢) with e =1
Case 1. T(n) = ©(n?)

EECS 3101A F 19

Master Theorem

The Master Theorem: More Examples

T(n)=aT(n/b)+ f(n)
e Artificial example 2: T(n) =4T(n/2) + n’.
a=4b=2f(n) € O(nd),n'e2* = n?,
f(n) = Q(n?*c) with e = 1
Case 3: T(n) = ©(n®) provided the regularity condition
holds
Check: 4f(n/2) < cf(n) for some c < 1

4f(n/2) = 4(n/2)?
= n*/2
cn® for ¢ < 1/2

IN

EECS 3101A F 19
Master Theorem

The Master Theorem: Last Example

T(n)=aT(n/b)+ f(n)
o Artificial example 3: T(n) =2T(n/2)+ nlgn.
n'°8sa = plog22 — n f(n) = nlgn

Neither Case 2 nor Case 3.

EECS 3101A F 19
Master Theorem

Master Theorem — Points to Remember

@ We ignore floors and ceilings, because the final answer
does not change

e We ignore constants in T(1), f(n)

EECS 3101A F 19
Master Theorem

If the Master Theorem fails...

@ Recursion tree approach

@ Induction

EECS 3101A F 19
|lHﬁMEEEHEE&ll
Recursion Tree Method
Recursion Tree Method
Example: T(n) = T(n/4)+ T(n/2) + n?

Rule: recursive term creates children, other term attached to
node

EECS 3101A F 19

Recursion Tree Method
Recursion Tree Method

Example: T(n) = T(n/4) + T(n/2) + n?

geometric

on’)

EECS 3101A F 19
I —
Recursion Tree Method
Recursion Tree Method — Another Example
Example: T(n) = T(n/3)+ T(2n/3)+n

Rule: recursive term creates children, other term attached to
node

/"\
/ \ / \

2n 211

Total: O(n lg n)

EECS 3101A F 19
Induction Method

Induction

Example: T(n) =4T(n/2)+n
Attempt 1: T(n) = O(n?). Assume T (k) < ck® for k < n/2

T(n) = 4T(n/2)+n
4c(n/2)® 4+ n
cn®/2+n

cn if n < en®/2,n > ng

I IA

IA

Trueif c=2,np =1

EECS 3101A F 19

Induction Method

Induction — Tighter Bound

Example: T(n) =4T(n/2

Try to show T(n) = O(n?
Attempt 1: Assume T (k)

T(n)

IA

S

)+
)
<

ck? for k < n/2

4T(n/2)+n
4c(n/2)* + n
cn? +n

cn? for any ¢ > 0

try to strengthen the hypothesis:

T(n) < (answer you want) -

(something positive)

EECS 3101A F 19
Induction Method
Induction — Tighter Bound

Example: T(n) =4T(n/2) +

Try to show T(n) = O(n?)
Attempt 2: Assume T (k) < c;k* — ok for k < n

T(n)

4T(n/2) + n
4(ci(n/2)* — cx(n/2)) + n

= an’—=2cn+n

IN

c1n2 — Gn—Gon+n

an®—an—(c—1)n

IN

< can®—cgnforc >1

Note: ¢; must be chosen to be large enough so that
T(l) < G — G.

	Recurrences
	Solving Recurrences
	Master Theorem
	Recursion Tree Method
	Induction Method

