EECS 3101 A: Design and Analysis of Algorithms

Suprakash Datta
Office: LAS 3043

Course page: http://www.eecs.yorku.ca/course/3101A
Also on Moodle

Recurrences from Divide and Conquer algorithms

$T(n)= \begin{cases}\text { time to solve trivial problem } & \text { if } n=1 \\ a T(n / b)+\text { time to divide }+ \text { combine } & \text { if } n>1\end{cases}$
E.g. Merge sort: $T(n)= \begin{cases}\Theta(1) & \text { if } n=1 \\ 2 T(n / 2)+\Theta(n) & \text { if } n>1\end{cases}$

The Master Theorem

- The idea is to solve a class of recurrences that have the form

$$
T(n)=a T(n / b)+f(n)
$$

- $a \geq 1$ and $b>1$, and f is asymptotically positive!
- Abstractly speaking, $T(n)$ is the runtime for an algorithm and we know that
- a subproblems of size n / b are solved recursively, each in time $T(n / b)$
- $f(n)$ is the cost of dividing the problem and combining the results. In merge-sort $a=b=2, f(n)=\Theta(n)$

The Master Theorem - 2

Split problem into a parts at $\log _{b} n$ levels. There area $a^{\log _{b} n}=n^{\log _{b} a}$ leaves

The Master Theorem - 3

$$
\begin{aligned}
T(n)= & f(n)+a T\left(\frac{n}{b}\right) \\
= & f(n)+a f\left(\frac{n}{b}\right)+a^{2} T\left(\frac{n}{b^{2}}\right) \\
= & f(n)+a f\left(\frac{n}{b}\right)+a^{2} f\left(\frac{n}{b^{2}}\right)+a^{3} T\left(\frac{n}{b^{3}}\right) \\
= & \cdots \\
= & f(n)+a f\left(\frac{n}{b}\right)+\ldots+a^{\log _{b} n-1} f\left(\frac{n}{b^{\log _{b} n-1}}\right) \\
& +a^{\log _{b} n} T(1)
\end{aligned}
$$

Thus

$$
T(n)=\sum_{j=0}^{\log _{b} n-1} a^{j} f\left(\frac{n}{b^{j}}\right)+\Theta\left(n^{\log _{b} a}\right)
$$

The Master Theorem: Intuition

$$
T(n)=\sum_{j=0}^{\log _{b} n-1} a^{j} f\left(\frac{n}{b^{j}}\right)+\Theta\left(n^{\log _{b} a}\right)
$$

- The first term is a division/recombination cost (totaled across all levels of the tree)
- The second term is the cost of doing all $n^{\log _{b} a}$ subproblems of size 1 (total of all work pushed to leaves)
- Three common cases:
(1) Running time dominated by cost at leaves
(2) Running time evenly distributed throughout the tree
(3) Running time dominated by cost at root

The Master Theorem: Intuition-2

$$
T(n)=\sum_{j=0}^{\log _{b} n-1} a^{j} f\left(\frac{n}{b^{j}}\right)+\Theta\left(n^{\log _{b} a}\right)
$$

- Consequently, to solve the recurrence, we need only to characterize the dominant term
- In each case compare $f(n)$ with $O\left(n^{\log _{b} a}\right)$

The Master Theorem: Case 1

$$
T(n)=\sum_{j=0}^{\log _{b} n-1} a^{j} f\left(\frac{n}{b^{j}}\right)+\Theta\left(n^{\log _{b} a}\right)
$$

- $f(n)=O\left(n^{\log _{b} a-\epsilon}\right)$ for some constant $\epsilon>0: f(n)$ grows polynomially (by factor n^{ϵ}) slower than $n^{\log _{b} a}$
- The work at the leaf level dominates
- Summation of recursion-tree levels: $O\left(n^{\log _{b} a}\right)$
- Cost of all the leaves $\Theta\left(n^{\log _{b} a}\right)$
- Thus, the overall cost is $T(n)=\Theta\left(n^{\log _{b} a}\right)$

The Master Theorem: Case 2

$$
T(n)=\sum_{j=0}^{\log _{b} n-1} a^{j} f\left(\frac{n}{b^{j}}\right)+\Theta\left(n^{\log _{b} a}\right)
$$

- $f(n)=\Theta\left(n^{\log _{b} a}\right): f(n)$ and $n^{\log _{b} a}$ are asymptotically "the same"
- The work is distributed equally throughout the tree
- Total cost: level cost \times number of levels
- Thus, the overall cost is $T(n)=\Theta\left(n^{\log _{b} a} \lg n\right)$

The Master Theorem: Case 3

$$
T(n)=\sum_{j=0}^{\log _{b} n-1} a^{j} f\left(\frac{n}{b^{j}}\right)+\Theta\left(n^{\log _{b} a}\right)
$$

- $f(n)=\Omega\left(n^{\log _{b} a+\epsilon}\right)$ for some constant $\epsilon>0: f(n)$ grows polynomially (by factor n^{ϵ}) faster than $n^{\log _{b} a}$
- The work the root dominates
- Inverse of Case 1
- Also need a regularity condition:
$\exists c \in(0,1), \exists n_{0}>0, \forall n>n_{0}, a f(n / b) \leq c f(n)$
- Thus, the overall cost is $T(n)=\Theta(f(n))$

The Master Theorem: Summary

$$
T(n)=a T(n / b)+f(n)
$$

- $f(n)=O\left(n^{\log _{b} a-\epsilon}\right), \epsilon>0: T(n)=\Theta\left(n^{\log _{b} a}\right)$
- $f(n)=\Theta\left(n^{\log _{b} a}\right): T(n)=\Theta\left(n^{\log _{b} a} \lg n\right)$
- $f(n)=\Omega\left(n^{\log _{b} a+\epsilon}\right), \epsilon>0: T(n)=\Theta(f(n))$

Caveat: The master method cannot solve every recurrence of this form; there is a gap between cases 1 and 2 , as well as cases 2 and 3

The Master Theorem: Examples

$$
T(n)=a T(n / b)+f(n)
$$

- Mergesort $(a=2, b=2, f(n)=\Theta(n))$. Case 2: $T(n)=\Theta(n \lg n)$
- Binary Search (recursive): $T(n)=T(n / 2)+1$.
$a=1, b=2, n^{\log _{2} 1}=1, f(n)=1 \in \Theta(1)$.
Case 2: $T(n)=\Theta(\lg n)$
- Artificial example 1: $T(n)=9 T(n / 3)+n$. $a=9, b=3, f(n)=n \in \Theta(n), n^{\log _{3} 9}=n^{2}$, $f(n)=O\left(n^{2-\epsilon}\right)$ with $\epsilon=1$
Case 1: $T(n)=\Theta\left(n^{2}\right)$

The Master Theorem: More Examples

$$
T(n)=a T(n / b)+f(n)
$$

- Artificial example 2: $T(n)=4 T(n / 2)+n^{3}$.
$a=4, b=2, f(n) \in \Theta\left(n^{3}\right), n^{\log _{2} 4}=n^{2}$,
$f(n)=\Omega\left(n^{2+\epsilon}\right)$ with $\epsilon=1$
Case 3: $T(n)=\Theta\left(n^{3}\right)$ provided the regularity condition holds
Check: $4 f(n / 2) \leq c f(n)$ for some $c<1$

$$
\begin{aligned}
4 f(n / 2) & =4(n / 2)^{3} \\
& =n^{3} / 2 \\
& \leq c n^{3} \text { for } c \leq 1 / 2
\end{aligned}
$$

The Master Theorem: Last Example

$$
T(n)=a T(n / b)+f(n)
$$

- Artificial example 3: $T(n)=2 T(n / 2)+n \lg n$.

$$
n^{\log _{b} a}=n^{\log _{2} 2}=n, f(n)=n \lg n
$$

Neither Case 2 nor Case 3.

Master Theorem - Points to Remember

- We ignore floors and ceilings, because the final answer does not change
- We ignore constants in $T(1), f(n)$

If the Master Theorem fails...

- Recursion tree approach
- Induction

Recursion Tree Method

Example: $T(n)=T(n / 4)+T(n / 2)+n^{2}$
Rule: recursive term creates children, other term attached to node

Recursion Tree Method

Example: $T(n)=T(n / 4)+T(n / 2)+n^{2}$

Recursion Tree Method - Another Example

Example: $T(n)=T(n / 3)+T(2 n / 3)+n$
Rule: recursive term creates children, other term attached to node

Induction

Example: $T(n)=4 T(n / 2)+n$
Attempt 1: $T(n)=O\left(n^{3}\right)$. Assume $T(k) \leq c k^{3}$ for $k \leq n / 2$

$$
\begin{aligned}
T(n) & =4 T(n / 2)+n \\
& \leq 4 c(n / 2)^{3}+n \\
& =c n^{3} / 2+n \\
& \leq c n^{3} \text { if } n \leq c n^{3} / 2, n \geq n_{0}
\end{aligned}
$$

True if $c=2, n_{0}=1$

Induction - Tighter Bound

Example: $T(n)=4 T(n / 2)+n$
Try to show $T(n)=O\left(n^{2}\right)$
Attempt 1: Assume $T(k) \leq c k^{2}$ for $k \leq n / 2$

$$
\begin{aligned}
T(n) & =4 T(n / 2)+n \\
& \leq 4 c(n / 2)^{2}+n \\
& =c n^{2}+n \\
& \not \leq c n^{2} \text { for any } c>0
\end{aligned}
$$

try to strengthen the hypothesis:
$T(n) \leq$ (answer you want) - (something positive)

Induction - Tighter Bound

Example: $T(n)=4 T(n / 2)+n$
Try to show $T(n)=O\left(n^{2}\right)$
Attempt 2: Assume $T(k) \leq c_{1} k^{2}-c_{2} k$ for $k<n$

$$
\begin{aligned}
T(n) & =4 T(n / 2)+n \\
& \leq 4\left(c_{1}(n / 2)^{2}-c_{2}(n / 2)\right)+n \\
& =c_{1} n^{2}-2 c_{2} n+n \\
& \leq c_{1} n^{2}-c_{2} n-c_{2} n+n \\
& =c_{1} n^{2}-c_{2} n-\left(c_{2}-1\right) n \\
& \leq c_{1} n^{2}-c_{2} n \text { for } c_{2} \geq 1
\end{aligned}
$$

Note: c_{1} must be chosen to be large enough so that $T(1) \leq c_{1}-c_{2}$.

