
EECS 3101A F 19

EECS 3101 A: Design and Analysis of

Algorithms

Suprakash Datta
Office: LAS 3043

Course page: http://www.eecs.yorku.ca/course/3101A
Also on Moodle

http://www.eecs.yorku.ca/course/3101A

EECS 3101A F 19

Recurrences

Recurrences from Divide and Conquer algorithms

T (n) =

{
time to solve trivial problem if n = 1
aT (n/b) + time to divide + combine if n > 1

E.g. Merge sort: T (n) =

{
Θ(1) if n = 1
2T (n/2) + Θ(n) if n > 1

EECS 3101A F 19

Solving Recurrences

Master Theorem

The Master Theorem

The idea is to solve a class of recurrences that have the
form

T (n) = aT (n/b) + f (n)

a ≥ 1 and b > 1, and f is asymptotically positive!

Abstractly speaking, T(n) is the runtime for an algorithm
and we know that

a subproblems of size n/b are solved recursively, each in
time T (n/b)

f (n) is the cost of dividing the problem and combining
the results. In merge-sort a = b = 2, f (n) = Θ(n)

EECS 3101A F 19

Solving Recurrences

Master Theorem

The Master Theorem – 2

Split problem into a parts at logb n levels. There
arealogb n = nlogb a leaves

EECS 3101A F 19

Solving Recurrences

Master Theorem

The Master Theorem – 3

T (n) = f (n) + aT
(n
b

)
= f (n) + af

(n
b

)
+ a2T

(n

b2

)
= f (n) + af

(n
b

)
+ a2f

(n

b2

)
+ a3T

(n

b3

)
= . . .

= f (n) + af
(n
b

)
+ . . . + alogb n−1f

(n

blogb n−1

)
+alogb nT (1)

Thus

T (n) =

logb n−1∑
j=0

aj f
(n

bj

)
+ Θ(nlogb a)

EECS 3101A F 19

Solving Recurrences

Master Theorem

The Master Theorem: Intuition

T (n) =

logb n−1∑
j=0

aj f
(n

bj

)
+ Θ(nlogb a)

The first term is a division/recombination cost (totaled
across all levels of the tree)

The second term is the cost of doing all nlogb a

subproblems of size 1 (total of all work pushed to leaves)

Three common cases:
1 Running time dominated by cost at leaves
2 Running time evenly distributed throughout the tree
3 Running time dominated by cost at root

EECS 3101A F 19

Solving Recurrences

Master Theorem

The Master Theorem: Intuition - 2

T (n) =

logb n−1∑
j=0

aj f
(n

bj

)
+ Θ(nlogb a)

Consequently, to solve the recurrence, we need only to
characterize the dominant term

In each case compare f (n) with O(nlogb a)

EECS 3101A F 19

Solving Recurrences

Master Theorem

The Master Theorem: Case 1

T (n) =

logb n−1∑
j=0

aj f
(n

bj

)
+ Θ(nlogb a)

f (n) = O(nlogb a−ε) for some constant ε > 0: f (n) grows
polynomially (by factor nε) slower than nlogb a

The work at the leaf level dominates

Summation of recursion-tree levels: O(nlogb a)

Cost of all the leaves Θ(nlogb a)

Thus, the overall cost is T (n) = Θ(nlogb a)

EECS 3101A F 19

Solving Recurrences

Master Theorem

The Master Theorem: Case 2

T (n) =

logb n−1∑
j=0

aj f
(n

bj

)
+ Θ(nlogb a)

f (n) = Θ(nlogb a): f (n) and nlogb a are asymptotically “the
same”

The work is distributed equally throughout the tree

Total cost: level cost × number of levels

Thus, the overall cost is T (n) = Θ(nlogb a lg n)

EECS 3101A F 19

Solving Recurrences

Master Theorem

The Master Theorem: Case 3

T (n) =

logb n−1∑
j=0

aj f
(n

bj

)
+ Θ(nlogb a)

f (n) = Ω(nlogb a+ε) for some constant ε > 0: f (n) grows
polynomially (by factor nε) faster than nlogb a

The work the root dominates

Inverse of Case 1

Also need a regularity condition:
∃c ∈ (0, 1),∃n0 > 0, ∀n > n0, af (n/b) ≤ cf (n)

Thus, the overall cost is T (n) = Θ(f (n))

EECS 3101A F 19

Solving Recurrences

Master Theorem

The Master Theorem: Summary

T (n) = aT (n/b) + f (n)

f (n) = O(nlogb a−ε), ε > 0: T (n) = Θ(nlogb a)

f (n) = Θ(nlogb a): T (n) = Θ(nlogb a lg n)

f (n) = Ω(nlogb a+ε), ε > 0: T (n) = Θ(f (n))

Caveat: The master method cannot solve every recurrence of
this form; there is a gap between cases 1 and 2, as well as
cases 2 and 3

EECS 3101A F 19

Solving Recurrences

Master Theorem

The Master Theorem: Examples

T (n) = aT (n/b) + f (n)

Mergesort (a = 2, b = 2, f (n) = Θ(n)). Case 2:
T (n) = Θ(n lg n)

Binary Search (recursive): T (n) = T (n/2) + 1.
a = 1, b = 2, nlog2 1 = 1, f (n) = 1 ∈ Θ(1).
Case 2: T (n) = Θ(lgn)

Artificial example 1: T (n) = 9T (n/3) + n.
a = 9, b = 3, f (n) = n ∈ Θ(n), nlog3 9 = n2,
f (n) = O(n2−ε) with ε = 1
Case 1: T (n) = Θ(n2)

EECS 3101A F 19

Solving Recurrences

Master Theorem

The Master Theorem: More Examples

T (n) = aT (n/b) + f (n)

Artificial example 2: T (n) = 4T (n/2) + n3.
a = 4, b = 2, f (n) ∈ Θ(n3), nlog2 4 = n2,
f (n) = Ω(n2+ε) with ε = 1
Case 3: T (n) = Θ(n3) provided the regularity condition
holds
Check: 4f (n/2) ≤ cf (n) for some c < 1

4f (n/2) = 4(n/2)3

= n3/2

≤ cn3 for c ≤ 1/2

EECS 3101A F 19

Solving Recurrences

Master Theorem

The Master Theorem: Last Example

T (n) = aT (n/b) + f (n)

Artificial example 3: T (n) = 2T (n/2) + n lg n.
nlogb a = nlog2 2 = n, f (n) = n lg n

Neither Case 2 nor Case 3.

EECS 3101A F 19

Solving Recurrences

Master Theorem

Master Theorem – Points to Remember

We ignore floors and ceilings, because the final answer
does not change

We ignore constants in T (1), f (n)

EECS 3101A F 19

Solving Recurrences

Master Theorem

If the Master Theorem fails...

Recursion tree approach

Induction

EECS 3101A F 19

Solving Recurrences

Recursion Tree Method

Recursion Tree Method

Example: T (n) = T (n/4) + T (n/2) + n2

Rule: recursive term creates children, other term attached to
node

EECS 3101A F 19

Solving Recurrences

Recursion Tree Method

Recursion Tree Method

Example: T (n) = T (n/4) + T (n/2) + n2

EECS 3101A F 19

Solving Recurrences

Recursion Tree Method

Recursion Tree Method – Another Example

Example: T (n) = T (n/3) + T (2n/3) + n
Rule: recursive term creates children, other term attached to
node

EECS 3101A F 19

Solving Recurrences

Induction Method

Induction

Example: T (n) = 4T (n/2) + n

Attempt 1: T (n) = O(n3). Assume T (k) ≤ ck3 for k ≤ n/2

T (n) = 4T (n/2) + n

≤ 4c(n/2)3 + n

= cn3/2 + n

≤ cn3 if n ≤ cn3/2, n ≥ n0

True if c = 2, n0 = 1

EECS 3101A F 19

Solving Recurrences

Induction Method

Induction – Tighter Bound

Example: T (n) = 4T (n/2) + n

Try to show T (n) = O(n2)
Attempt 1: Assume T (k) ≤ ck2 for k ≤ n/2

T (n) = 4T (n/2) + n

≤ 4c(n/2)2 + n

= cn2 + n

6≤ cn2 for any c > 0

try to strengthen the hypothesis:
T (n) ≤ (answer you want) - (something positive)

EECS 3101A F 19

Solving Recurrences

Induction Method

Induction – Tighter Bound

Example: T (n) = 4T (n/2) + n

Try to show T (n) = O(n2)
Attempt 2: Assume T (k) ≤ c1k

2 − c2k for k < n

T (n) = 4T (n/2) + n

≤ 4(c1(n/2)2 − c2(n/2)) + n

= c1n
2 − 2c2n + n

≤ c1n
2 − c2n − c2n + n

= c1n
2 − c2n − (c2 − 1)n

≤ c1n
2 − c2n for c2 ≥ 1

Note: c1 must be chosen to be large enough so that
T (1) ≤ c1 − c2.

	Recurrences
	Solving Recurrences
	Master Theorem
	Recursion Tree Method
	Induction Method

