EECS 3101 A: Design and Analysis of Algorithms

Suprakash Datta
Office: LAS 3043

Course page: http://www.eecs.yorku.ca/course/3101A
Also on Moodle

Computing Order Statistics

Order statistics: The $i^{\text {th }}$ order statistic of n elements $a_{1}, a_{2}, \ldots, a_{n}$ is the $i^{\text {th }}$ smallest element

- Special cases: Minimum and maximum, Median
- How do we find the $i^{\text {th }}$ order statistic?

Already seen:

- $i=1: \Theta(n)$ algorithm, optimal
- Also, Build-Heap + Extract-max: $\Theta(n)$ algorithm
- Same bounds hold for any constant i
- Sorting solves it for any i: $\Theta(n \log n)$ algorithm
- What about $i=n / 2$? Can we do better than $\Theta(n \log n)$?

Computing Order Statistics - 2

To select the $i^{\text {th }}$ order statistic:

- Can we use PARTITION?
- if we are very lucky, we will get it in the first try!
- otherwise we should have a smaller set to recurse on.
- No guarantee of being lucky!
- How can we guarantee a significantly smaller set?

The algorithm is the most complicated divide-and-conquer algorithm in this course!

Computing Order Statistics: Algorithm SELECT

- Divide n elements into $\lceil n / 5\rceil$ groups of 5 elements.
- Find the median of each group.
- Use SELECT recursively to find the median x of the above $\lceil n / 5\rceil$ medians.
- Partition using x as pivot, and find position k of x
- If $i=k$ return
- else recurse on the appropriate subarray.

What kind of split does this produce?

Algorithm SELECT - 2

Figure 9.1 Analysis of the algorithm Select. The n elements are represented by small circles, and each group occupies a column. The medians of the groups are whitened, and the median-ofmedians x is labeled. (When finding the median of an even number of elements, we use the lower median.) Arrows are drawn from larger elements to smaller, from which it can be seen that 3 out of every full group of 5 elements to the right of x are greater than x, and 3 out of every group of 5 elements to the left of x are less than x. The elements greater than x are shown on a shaded background.

SELECT - Analysis

- Steps $1,2,4$ take $O(n)$
- Step 3 takes $T(\lceil n / 5\rceil)$
- Step 5: At least half of medians in step 2 are $\geq x$, thus at least $\lceil 1 / 2\lceil n / 5\rceil\rceil-2$ groups contribute 3 elements which are $\geq x$ i.e, $3(\lceil 1 / 2\lceil n / 5\rceil\rceil-2) \geq(3 n / 10)-6$
- Similarly, the number of elements $\leq x$ is also at least (3n/10) - 6
Thus, $\left|S_{1}\right|$ is at most $(7 n / 10)+6$, similarly for $\left|S_{3}\right|$
- Thus SELECT in step 5 is called recursively on at most $(7 n / 10)+6$ elements.

SELECT - Recurrence

Recurrence is:

$$
\begin{aligned}
T(n) & =O(1) \text { if } n<140 \\
& =T(\lceil n / 5\rceil)+T(7 n / 10+6)+O(n) \text { if } n \geq 140
\end{aligned}
$$

Show $T(n) \leq c n$, for some $c>0$

SELECT - 2

$$
\begin{aligned}
T(n) & \leq c\lceil n / 5\rceil+c(7 n / 10+6)+a n \\
& \leq c n / 5+c+7 / 10 c n+6 c+a n \\
& =9 / 10 c n+a n+7 c \\
& =c n+(-c n / 10+a n+7 c) \\
& \leq c n \text { if } \\
-c n / 10+a n+7 c & <0 \\
c & \geq 10 a(n /(n-70)) \text { when } n>70
\end{aligned}
$$

So select $n=140$, and then $c \geq 20$ a
Note: n need not be 140 , any integer >70 is OK

Exercise

Describe an $O(n)$ algorithm that, given a set S of n distinct numbers and a positive integer $k \leq n$, determines the k numbers in S that are closest to the median of S.

