
EECS 3101M F 19

EECS 3101 A: Design and Analysis of

Algorithms

Suprakash Datta
Office: LAS 3043

Course page: http://www.eecs.yorku.ca/course/3101A
Also on Moodle

http://www.eecs.yorku.ca/course/3101A


EECS 3101M F 19

Lower Bounds

Lower Bounds

Applicable to a problem, not an algorithm

We will prove lower bounds on the worst-case running
time of an algorithm

Warning: we must reason about all algorithms, so we
have to be careful not to assume anything about how the
algorithm proceeds

We can have lower bounds on running time, memory,
number of times a specific operation is used.....



EECS 3101M F 19

Lower Bounds for finding the Maximum

Lower Bound for a Simple Problem: FindMax

Consider only comparison-based algorithms

Want to show any such algorithm must use Ω(n)
comparisons in the worst case

We will show a more exact result in this case

Note that the number of comparisons is a lower bound on
the running time of an algorithm



EECS 3101M F 19

Lower Bounds for finding the Maximum

Proof of Lower Bound

Claim: Any comparison-based algorithm for finding the
maximum of n distinct elements must use at least n − 1
comparisons.

Proof:
If x , y are compared and x > y , call x the winner, y the
loser.
Any key that is not the maximum must have lost at least
one comparison. WHY?
Each comparison produces exactly one loser and at most
one NEW loser.
Therefore, at least n − 1 comparisons have to be made.



EECS 3101M F 19

Lower Bounds for finding the Maximum

Observations

We proved a claim about ANY algorithm that only uses
comparisons to find the maximum. Specifically, we made no
assumptions about

Nature of algorithm

Order or number of comparisons

Optimality of algorithm

Whether the algorithm is “reasonable”, e.g. it could be a
very wasteful algorithm, repeating the same comparisons



EECS 3101M F 19

Lower Bounds for Sorting

Lower Bounds for Sorting - Big Picture

Can we beat the Ω(n log n) lower bound for sorting?

A: In general no, but in some special cases YES!

Ch 7: Sorting in linear time

We will prove the Ω(n log n) lower bound.



EECS 3101M F 19

Lower Bounds for Sorting

Lower Bounds for Sorting- Details

What (if any) are the assumptions?

Is the model general enough?

Here we are interested in lower bounds for the WORST CASE.
So we will prove (directly or indirectly):

For any algorithm for a given problem, for each n > 0, there
exists an input that make the algorithm take Ω(f (n)) time.
Then f (n) is a lower bound on the worst case running time.



EECS 3101M F 19

Lower Bounds for Sorting

Comparison-based Algorithms

The algorithm only uses the results of comparisons, not
values of elements (*)

Very general – does not assume much about what type of
data is being sorted

However, other kinds of algorithms are possible!

In this model, it is reasonable to count #comparisons.
Note that the #comparisons is a lower bound on the
running time of an algorithm.

(*) If values are used, lower bounds proved in this model are
not lower bounds on the running time.



EECS 3101M F 19

Lower Bounds for Sorting

Lower Bound: Observations

Lower bounds are rarely simple: there are virtually no
known general techniques.

So we must try ad hoc methods for each problem.

We proved a lower bound on finding the maximum

Sorting lower bounds:

Trivial: Ω(n) – every element must be in a comparison
Best possible result – Ω(n log n) comparisons, since we
already know several O(n log n) sorting algorithms
Difficulty: how do we reason about all possible
comparison-based sorting algorithms?



EECS 3101M F 19

Lower Bounds for Sorting

The Decision Tree Model

Assumptions:

All numbers are distinct

All comparisons have form ai ≤ aj (since
ai < aj , ai ≤ aj , ai ≥ aj , ai > aj are equivalent)

Decision tree structure

Full binary tree

Ignore control, movement, and all other operations, just
use comparisons.

suppose three elements 〈a1, a2, a3〉 with instance 〈6, 8, 5〉.



EECS 3101M F 19

Lower Bounds for Sorting

The Decision Tree Model - Example

Insertion-Sort(A)

1 for j = 2 to A. length
2 key = A[j ]
3 // Insert A[j ] into the sorted sequence A[1 . . j − 1].
4 i = j − 1
5 while i > 0 and A[i ] > key
6 A[i + 1] = A[i ]
7 i = i − 1
8 A[i + 1] = key



EECS 3101M F 19

Lower Bounds for Sorting

Insertion Sort: Decision Tree



EECS 3101M F 19

Lower Bounds for Sorting

Insertion Sort: Another view

Internal node i : j indicates comparison between ai and aj .
Leaf node 〈p1, p2, p3〉 indicates ordering ap1 ≤ ap2 ≤ ap3
Path of bold lines indicates sorting path for 〈6, 8, 5〉. There
are total 3! = 6 possible permutations (paths).



EECS 3101M F 19

Lower Bounds for Sorting

The Decision Tree Model - Summary

Only consider comparisons

Each internal node = 1 comparison

Start at root, make the first comparison

if the outcome is ≤, take the LEFT branch

if the outcome is >, take the RIGHT branch

Repeat at each internal node

Each LEAF represents ONE correct ordering



EECS 3101M F 19

Lower Bounds for Sorting

Lower Bound on Sorting

Claim: The decision tree must have at least n! leaves.
WHY?

worst case number of comparisons = the height of the
decision tree

Claim: Any comparison sort in the worst case needs
Ω(n log n) comparisons

Suppose height of a decision tree is h, number of paths
(i.e., permutations) is n!

Since a binary tree of height h has at most 2h leaves,
n ≤ 2h

So h ≥ lg n! ∈ Ω(n lg n)



EECS 3101M F 19

Lower Bounds for Sorting

Lower Bounds: Check your understanding

Can you prove that any algorithm that searches for an
element in a sorted array of size n must have running
time Ω(lg n)?


	Lower Bounds
	Lower Bounds for finding the Maximum
	Lower Bounds for Sorting

