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Greedy Algorithms

Greedy Algorithms (Ch. 16)

Basic idea:

In order to get an optimal solution, just keep grabbing
what looks best.

No backtracking (reversing earlier choices) allowed

Local algorithm; often produces globally optimal solutions

Typically the algorithm is simple. The proof that a greedy
algorithm produces an optimal solution may be harder.

“Every two year old knows the greedy algorithm”
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Greedy Algorithms - outline

In a loop:

grab the next best object

if it conflicts with committed objects, or fulfills no new
requirements: Reject this object

else: Commit to it.
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Relationship with Dynamic Programming

In DP, we do not know a priori what the best choice is

For greedy algorithms we believe we know a best choice

The proof of optimality is really a proof of the above claim

This is why the book covers greedy after DP

Optimal substructure and greedy choice are properties of
the problem and a particular formulation .... if these
properties hold, we know that DP and greedy algorithms
(respectively) will be optimal for a problem
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Example

Making change problem: Find the minimum number of
coins (i.e., quarters, dimes, nickels, and pennies) that
total to a given amount.

Greedy Algorithm: Keep grabbing the largest coin that
keeps the solution cost less than or equal to the given
amount.

E.g.: Make change for 71 cents
Solution: A subset of the coins that total 71 cents (25,
25, 10, 10, 1)
Cost of Solution: The number of objects in solution or
the sum of the costs of objects (5)
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The greedy algorithm does not always work

Problem: Find the minimum number of 4, 3, and 1 cent
coins to make up 6 cents.

Greedy solution: (4, 1, 1) cost 3
Optimal Solution: (3,3) cost 2

Lessons

Not all problems admit greedy algorithms.
For those that do, all greedy algorithms do not work.
The proof that a greedy algorithm works is subtle but
essential.
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Proving optimality of greedy algorithms

Loop Invariant: There is at least one optimal solution
consistent with the choices made so far

Initially no choices have been made and hence all optimal
solutions are consistent with these choices.

It is often easier to carry out the proof by contradiction.

For denominations 1,5,10,25 cents, prove optimality for
amount C cents.
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Making change:the greedy algorithm is optimal

Consider solutions from greedy algorithm Sol(G ) and that
from optimal Sol(O). Sort both in decreasing order.

Look at first place (k) where they differ. Sol(G ) MUST
contain a coin of higher denomination

Case 1: Sol(G ) has a 5 c coin, Sol(O) does not. Sol(O)
must make 5 c with 1 c; cannot be optimal.
Case 2: Sol(G ) has a 10 c coin, Sol(O) does not. Must
make 10 c with 5 c and 1 c. Sol(O) cannot be optimal.
Case 3: Sol(G ) has a 25 c coin, Sol(O) does not. If
Sol(G ) has 2 or more 25 c coins, Sol(O) must make 50
cents with 10c, 5c, 1c; cannot be optimal. Else Sol(O)
must use 1 or 2 or 3 or more 10c; in each case, Sol(O)
must be suboptimal.
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Making change:the greedy algorithm is optimal - 2

Q: How is this consistent with “LI: There is at least one
optimal solution consistent with the choices made so far.”

A: Take a different view of what we have done

We proved that the next coin of Sol(G ) agrees with that
of some Sol(O)

More precisely, we proved that if no solution in Sol(O)
agrees with Sol(G ), then Sol(O) cannot be optimal.
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Another example: (Continuous) Knapsack problem

Problem: Given n commodities, with total values vi dollars
and weight wi kg, and a knapsack that can carry maximum
weight K , to put in the knapsack a set of items that maximize
total value. You can take arbitrary fractions of any item.
Greedy algorithm:

Sort in decreasing order of vi/wi

Fill knapsack greedily

Correctness: Compare Sol(G ) with Sol(O), with both
solutions sorted in decreasing order of vi/wi . If they differ,
then prove that by replacing the object in Sol(O) with
the object in Sol(G ), we violate the optimality of Sol(O).
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More examples

Huffman codes

greedy scheduling
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Data Compression

When can you compress data?

Key question: Do you allow information to be lost?

Answer: depends on the application:
Music/movies: small loss ok
Text/data file transmission/storage: no loss permitted

Lossy compression: uses signal processing techniques
- Used in computer vision, image and speech processing
- Utilizes the fact that some part of the data (signal) can
be discarded without perceptible quality loss

Lossless compression: Must ve able to reconstruct the
exact data
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Lossless Data Compression

Q: if you cannot throw away any “‘data”, how can you
reduce its size?

Answer: by removing redundancy in the data

E.g.: My daughter sends me an sms “where are you?”
I could answer “I am at York”, “at York”, “York”

is this lossless compression?

Aside: What about the obvious redundancy in language?
(utilized by sms-language, e.g. I lv u, wt 4 me . . . )
Why/when is redundancy useful?
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Lossless Data Compression - 2

Assume: message is given, and cannot be altered

Q: How can you reduce the size?

Answer: variable length encodings

If there are k characters in the alphabet, each character
could be encoded using dlog ke bits (fixed length
encoding),
or some characters could use 1 bit, some 2 bits, etc.

Idea: the more frequent the letter, the shorter its
encoding.

Tradeoff: ease of parsing
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Fixed and variable length codes
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Fixed and variable length codes
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Huffman codes

Want unique parse trees (PREFIX codes)

Start with each character being a node, and set its weight
to be its frequency

Greedy strategy:
select the two least weight nodes and make them children
of the tree.
Replace the nodes with a new node with the sum of the
weights
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Huffman codes - algorithm
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Huffman codes algorithm - example
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Huffman codes - Optimality

Requires a bit of work

Can make the optimal solution more similar to greedy
solution
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Huffman codes - Optimality

Lemma: If x , y have the lowest frequencies, then there is an
optimal prefix code in which they are sibling leaves.
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Huffman codes - Optimality

If a, b have the lowest frequencies, then the greedy
algorithm replaces them by another “character” c whose
frequency is the sum of that of a, b.
Inductive argument:

Suppose that the greedy algorithm is optimal for k − 1
letter alphabets
For a k letter alphabet, it produces a tree S with x , y as
children. Inductively, the tree S” obtained by fusing
nodes x , y must be optimal
Suppose there exists a lower cost tree T . There must
exist a tree T ′ with the same lower cost with x , y as
children (previous lemma). Fuse nodes x , y ∈ T ′ to get
T”. T” has strictly lower cost than S”;
CONTRADICTION!.
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Huffman codes - Running Time

Naively, this requires O(n2) time. With priority queues
implemented with heaps, Extract-Min takes logarithmic
time. This gives total running time O(n log n).
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