EECS 3101 A: Design and Analysis of Algorithms

Suprakash Datta
Office: LAS 3043

Course page: http://www.eecs.yorku.ca/course/3101A
Also on Moodle

Definitions - 1

- $G=(V, E), V=$ set of nodes/vertices, $E=$ set of edges
- Edges incident on a vertex
- Adjacent vertices
- degree of a node
- neighborhood of a node
- Self-loop

Definitions - 2

- Edge Types:
- Directed edge: ordered pair of vertices (u, v)
- u : origin, v : destination
- Undirected edge: unordered pair of vertices (u, v)
- Graph Types:
- Directed graph: all the edges are directed
- Undirected graph: all the edges are undirected
- Paths:
- Simple Paths
- Cycles
- Simple cycles: no vertex repeated

Elementary Properties

- The sum of degrees is even (equals twice the number of edges in an undirected graph)
- The sum of indegrees equals sum of outdegrees in a directed graph
- In an undirected graph $m \leq \frac{n(n-1)}{2}$ What is the bound for directed graphs?

Subgraphs

- A subgraph S of a graph G is a graph such that
- The vertices of S are a subset of the vertices of G
- The edges of S are a subset of the edges of G
- A spanning subgraph of G is a subgraph that contains all the vertices of G

Subgraph

Spanning subgraph

Connected graphs

- A graph is connected if there is a path between every pair of vertices
- A connected component of a graph G is a maximal connected subgraph of G

Disconnected graph with two connected components

Trees

- A tree is a connected, acyclic, undirected graph
- A forest is a set of trees (not necessarily connected)

Tree, forest, a cyclic graph

Spanning Trees

- A spanning tree of a connected graph is a spanning subgraph that is a tree
- A spanning tree is not unique unless the graph is a tree
- Spanning trees have applications to the design of communication networks
- A spanning forest of a graph is a spanning subgraph that is a forest

Spanning tree
-Graph Representations

Graph Representations

- Edge list
- Adjacency list
- Adjacency matrix

Edge Lists

- Vertex object: reference to position in vertex sequence
- Edge object: origin vertex object, destination vertex object, reference to position in edge sequence
- Vertex sequence: sequence of vertex objects
- Edge sequence: sequence of edge objects

Adjacency Lists

- Incidence sequence for each vertex: sequence of references to edge objects of incident edges
- Augmented edge objects: references to associated positions in incidence sequences of end vertices

Adjacency Matrix

- Edge list structure
- Augmented vertex objects: Integer key (index) associated with vertex
- 2D-array adjacency array: Reference to edge object for adjacent vertices, null for non nonadjacent vertices
- The "old fashioned" version just has 0 for no edge and 1 for edge

Graph Problems

- Connectivity: Are all vertices reachable from each other?
- Reachability: Is a node v reachable from a node u ?
- Shortest Paths
- (Sub)graph Isomorphism
- Graph Coloring
- And many others

Coloring graphs

Basic idea:

- Assign colors to nodes
- Each edge should connect nodes of different colors
- Want to minimize the number of colors used
- The minimum number of colors is the property of a graph, called chromatic number

Bipartite graphs

- The set of vertices V can be partitioned into disjoint sets V_{1}, V_{2} such that all edges go between V_{1}, V_{2}
- A graph is bipartite if and only if it is 2-colorable
- How do we know if a graph is 2-colorable?

Greedy Bipartite Graph Coloring - idea

Assumes a connected undirected graph

- start at any node and color it red; label it "finished"
- color its neighbours blue and label the nodes "started"
- consider any node labeled "started".
- if it has a neighbour with the same color, exit with the message "not bipartite"
- else color its uncolored neighbours with the opposite color and label them "started"; label the current node "finished"

Greedy Bipartite Graph Coloring - Correctness

Part 1: If the algorithm fails the graph is not 2-colorable

- if the graph contains an odd cycle, it cannot be 2-colorable
- if the algorithm fails, the graph contains an odd cycle Why did the algorithm fail to 2-color? 2 nodes joined by the edge had the same color. So the distances from the least common ancestor of the 2 nodes to the nodes are both even or both odd. Adding the edge between them creates an odd cycle
Part 2: If the algorithm succeeds the graph is 2-colorable

More on Graph Coloring

- Determining if a graph has chromatic number of 1 or 2 is easy
- Determining if a graph has chromatic number 3 is NP-complete (believed to be intractable)
- For special classes of graphs, the chromatic number is known.
- For planar graphs the chromatic number is 4

Minimum Spanning Trees (MST)

- Undirected, connected graph $G=(V, E)$
- Weight function $w: E \rightarrow \mathbb{R}$ (assigning cost or length or other values to edges)
- Spanning tree: tree that connects all vertices
- Minimum spanning tree: tree T that connects all the vertices and minimizes $w(T)=\sum_{(u, v) \in T} w(u, v)$

Minimum Spanning Trees: Questions

- Is DP applicable?
- Is a greedy strategy applicable?

MST: Optimal Substructure

- Removing the edge (u, v) partitions T into T_{1} and T_{2} : $w(T)=w\left(T_{1}\right)+w\left(T_{2}\right)+w(u, v)$
- We claim that T_{1} is the MST of $G_{1}=\left(V_{1}, E_{1}\right)$, the subgraph of G induced by vertices in T_{1}.
- Similarly, T_{2} is the MST of G_{2}

MST: Greedy Choice Property

Greedy choice property: locally optimal (greedy) choice yields a globally optimal solution

Theorem:

- Let $G=(V, E)$, and let $S \subseteq V$ and
- Let (u, v) be min-weight edge in G connecting S to $V-S$
- Then $(u, v) \in T$ for some MST T of G

MST: Proof of Greedy Choice Property

- Let (u, v) be min-weight edge in G connecting S to $V-S$; suppose $(u, v) \notin T$
- look at path from u to v in T
- swap (x, y), the first edge on path from u to v in T that crosses from S to $V-S$, with (u, v)
- this decreases the cost of T - contradiction (T supposed to be MST)

Generic MST Algorithm

```
Generic-MST(G, w)
1 A\leftarrow\varnothing // Contains edges that belong to a MST
2 while A does not form a spanning tree do
3 Find an edge (u,v) that is safe for A
4 A\leftarrowA\cup{(u,v)}
5 return A
```

- Loop invariant: before each iteration, A is a subset of some MST
- Safe edge : edge that preserves the loop invariant

Generic MST Algorithm - 2

```
MoreSpecific-MST(G, w)
1 A\leftarrow\varnothing // Contains edges that belong to a MST
2 while A does not form a spanning tree do
3.1 Make a cut (S, V-S) of G that respects A
3.2 Take the min-weight edge (u,v) connecting S to V-S
4 A\leftarrowA\cup{(u,v)}
    return A
```

- A cut respects A if no edge of A crosses the cut
- Same LI: before each iteration, A is a subset of an MST
- Correctness proof in Theorem 23.1 in the text
- Many ways to choose cuts

Prim's Algorithm

- Vertex based algorithm
- Grows one tree T, one vertex at a time
- Imagine a "blob" covering the portion of T already computed
- Label the vertices v outside the blob with $k e y[v]=$ the minimum weight of an edge connecting v to a vertex in the blob, $k e y[v]=\infty$, if no such edge exists
- At each iteration, add the minimum weight vertex to T

Prim's Algorithm: Steps

- Pseudocode on pg 634
- Put all vertices in a priority queue Q with labels ∞
- Remove the start vertex and set its label to 0
- While Q is not empty, remove the vertex u with the minimum label and add it to the tree; For each neighbour v of u in Q, if $w(u, v)<$ label[$v]$, set label $[v]=w(u, v)$

Prim's Algorithm: Illustration

Prim's Algorithm: Illustration

Prim's Algorithm: Illustration

Prim's Algorithm: Analysis

- Proof of correctness on page 636
- Time $=O(|V| T($ ExtractMin $))+O(|E| T($ ModifyKey $))$
- Times depend on PQ implementation
- Heap based PQ:

BuildPQ : O(n), ExtractMin and ModifyKey: $O(\lg n)$
So running time:
$O(|V| \log |V|+|E| \log |V|)=O(|E| \log |V|)$

- With Fibonacci heaps: $O(|V| \log |V|+|E|)$

Kruskal's Algorithm

- Edge based algorithm
- Add the edges one at a time, in increasing weight order
- The algorithm maintains A : a forest of trees. An edge is accepted it if connects vertices of distinct trees

Kruskal's Algorithm: Requirements

We need an ADT that maintains a partition, i.e., a collection of disjoint sets
Operations:

- MakeSet $(S, x): S \leftarrow S \cup\{\{x\}\}$
- $\operatorname{Union}\left(S_{i}, S_{j}\right): S \leftarrow\left(S-\left\{S_{i}, S_{j}\right\}\right) \cup\left(S_{i} \cup S_{j}\right)$
- FindSet (S, x) : returns unique $S_{i} \in S$, where $x \in S_{i}$

Good ADT's for maintaining collections of disjoint sets are covered in EECS 4101

Kruskal's Algorithm: Illustration

Kruskal's Algorithm: Illustration

Kruskal's Algorithm: Illustration

Kruskal's Algorithm: Illustration

Kruskal's Algorithm: Analysis

- Proof of correctness: easy since minimum weight edge has to be a safe edge
- Sorting the edges $O(|E| \lg |E|)=O(|E| \lg |V|)$
- $O(|E|)$ calls to FindSet, Union
- With advanced data structures, the running time is $O(|E| \lg |V|)$

Graphs: Exploration and Searching

Method to explore many key properties of a graph

- Nodes that are reachable from a specific node v
- Detection of cycles
- Extraction of strongly connected components
- Topological sorts
- Find a path with the minimum number of edges between two given vertices

Note: Some slides in this presentation have been adapted from the author's and Prof Elder's slides.

Graph Search Algorithms

- Depth-first Search (DFS)
- Breadth-first Search (BFS)

Breadth First Search

A general technique for traversing a graph

- A BFS traversal of a graph G
- Visits all the vertices and edges of G
- Determines whether G is connected
- Computes the connected components of G
- Computes a spanning forest of G
- BFS on a graph with $|V|$ vertices and $|E|$ edges takes $\Theta(|V|+|E|)$ time
- BFS can be further extended to solve other graph problems
- Find and report a path with the minimum number of edges between two given vertices
- Cycle detection

Breadth First Search - 2

- In BFS exploration takes place on a level or wavefront consisting of nodes that are all the same distance from the source s
- We can label these successive wavefronts by their distance: L_{0}, L_{1}, \ldots

Breadth First Search - 3

- Input: directed or undirected graph $G=(V, E)$, source vertex $s \in V$
- Output: for all $v \in V$
- $d[v]$, the shortest distance from s to v
- $\pi[v]=u$, such that (u, v) is the last edge on the shortest distance from s to v
- Idea: send out search 'wave' from s
- Keep track of progress by colouring vertices:
- Undiscovered vertices are coloured white
- Just discovered vertices (on the wavefront) are coloured grey
- Previously discovered vertices (behind wavefront) are coloured black

Breadth First Search - Example

Breadth First Search - Example

Breadth First Search - Example

Breadth First Search - Algorithm

```
BFS (G,s)
O1 for each vertex u \in V[G]-{s}
02 color[u] \leftarrow white
03 d[u] \leftarrow \infty
04 \pi[u] \leftarrow NIL
0 5 ~ c o l o r [ s ] ~ \leftarrow ~ g r a y ~
06 d[s] \leftarrow 0
07\pi[u] \leftarrow NIL
08 Q \leftarrow {s}
0 9 ~ w h i l e ~ Q ~ \neq \varnothing ~ d o
10 u }\leftarrow head[Q
11 for each v \in Adj[u] do
12 if color[v] = white then
13 color[v] \leftarrow gray
14 d[v] \leftarrow d[u] + 1
15 \pi[v] \leftarrowu
16 Enqueue (Q,v)
17 Dequeue(Q)
18 color[u] \leftarrow black
```


BFS: Properties

Notation: G_{s} : connected component containing s

- Property 1: $\operatorname{BFS}(G, s)$ visits all the vertices and edges of G_{s}
- Property 2: The discovery edges labeled by $\operatorname{BFS}(G, s)$ form a spanning tree T_{s} of G_{s}
- Property 3: For any vertex v reachable from s, the path in the breadth first tree from s to v corresponds to a shortest path in G

BFS: Analysis

- Setting/getting a vertex/edge label takes $O(1)$ time
- Vertices are enqueued if there color is white
- Assuming that en- and dequeuing takes $O(1)$ time the total cost of this operation is $O(|V|)$
- Adjacency list of a vertex is scanned when the vertex is dequeued (and only then ...)
- The sum of the lengths of all lists is $O(|E|)$. Consequently, $O(|E|)$ time is spent on scanning them
- Initializing the algorithm takes $O(|V|)$
- Thus BFS runs in $\Theta(|V|+|E|)$ time provided the graph is represented by an adjacency list structure

BFS Application: Shortest Unweighted Paths

- Goal: To recover the shortest paths from a source node s to all other reachable nodes v in a graph
- The length of each path and the paths themselves are returned
- Notes:
- There are an exponential number of possible paths
- Analogous to level order traversal for trees
- This problem is harder for general graphs than trees because of cycles!

Depth-first Search

A DFS traversal of a graph G

- Visits all the vertices and edges of G
- Determines whether G is connected
- Computes the connected components of G
- Computes a spanning forest of G
- Find a cycle in the graph

Depth-first Search - 2

DFS: similar to a classic strategy for exploring a maze

Depth-first Search - Steps

- We start at vertex s, tying the end of our string to the point and painting s "visited (discovered)". Next we label s as our current vertex called u
- Now, we travel along an arbitrary edge (u, v)
- If edge (u, v) leads us to an already visited vertex v we return to u
- If vertex v is unvisited, we unroll our string, move to v, paint v "visited", set v as our current vertex, and repeat the previous steps

Depth-first Search - Steps

- Eventually, we will get to a point where all incident edges on u lead to visited vertices
- We then backtrack by unrolling our string to a previously visited vertex v. Then v becomes our current vertex and we repeat the previous steps
- Then, if all incident edges on v lead to visited vertices, we backtrack as we did before. We continue to backtrack along the path we have traveled, finding and exploring unexplored edges, and repeating the procedure

Depth-first Search - Algorithm

- Initialize: color all vertices white
- Visit each and every white vertex using DFS - Visit
- Each call to DFS - Visit(u) roots a new tree of the depth-first forest at vertex u
- A vertex is white if it is undiscovered
- A vertex is gray if it has been discovered but not all of its edges have been discovered
- A vertex is black after all of its adjacent vertices have been discovered (the adj. list was examined completely)
- In addition to, or instead of labeling vertices with colours, they can be labeled with discovery and finishing times.

Depth-first Search - Algorithm

- Time is an integer that is incremented whenever a vertex changes state
- from unexplored to discovered
- from discovered to finished
- These discovery and finishing times can then be used to solve other graph problems (e.g., computing strongly-connected components)
- Two timestamps put on every vertex:
- discovery time $d(v) \geq 1$
- finish time $1<f(v) \leq 2 n$

DFS - Example

DFS - Example

DFS - Example

B

DFS - Algorithm

DFS(G)	
1 for each vertex $u \in V[G]$	
2 do color[u]	
3 time $\leftarrow 0$	
4 for each vertex $u \in V[G]$	
5 do if color $[u]=$ WHITE	
6 then DFS-Visit (u)	
DFS-VISIT (u)	
1 color $[u] \leftarrow$ GRAY	\triangleright White vertex u discovered.
$2 d[u] \leftarrow$ time	\triangle Mark with discovery time.
3 time \leftarrow time +1	\triangle Tick global time.
4 for each $v \in \operatorname{Adj}[u$	\triangleright Explore all edges (u, v).
5 do if color [v]	
6 then D	SIT(v)
7 color $[u] \leftarrow$ BLACK	Δ Blacken u; it is finished.
$8 f[u] \leftarrow$ time	\triangle Mark with finishing time.
9 time \leftarrow time +1	\triangleright Tick global time.

DFS-Visit - Algorithm

Q: How are the edges classified?
Q: What do back edges signify?
Notice the implicit stack in the code.

DFS: Properties

- Property 1:

DFS-Visit(v) visits all the vertices and edges in the connected component of v

- Property 2:

The discovery edges labeled by DFS(v) form a spanning tree of the connected component of v

DFS: Analysis

- Setting/getting a vertex/edge label takes $O(1)$ time
- Each vertex is labeled twice
- once as UNEXPLORED
- once as VISITED
- Each edge is labeled twice
- once as UNEXPLORED once as DISCOVERY or BACK
- Method DFS-Visit is called once for each vertex
- DFS runs in $\theta(n+m)$ time provided the graph is represented by the adjacency list structure:
Recall that $\sum_{v} \operatorname{deg}(v)=2 m$

DFS on Directed Graphs

- Tree edges are edges in the depth-first forest G_{π}. Edge (u, v) is a tree edge if v was first discovered by exploring edge (u, v)
- Back edges are those edges (u, v) connecting a vertex u to an ancestor v in a depth-first tree
- Forward edges are non-tree edges (u, v) connecting a vertex u to a descendant v in a depth-first tree
- Cross edges are all other edges. They can go between vertices in the same depth-first tree, as long as one vertex is not an ancestor of the other.
- Classifying edges can help to identify properties of the graph, e.g., a graph is acyclic iff DFS yields no back edges

DFS on Undirected Graphs

- In a depth-first search of a connected undirected graph, every edge is either a tree edge or a back edge

DFS: Timestamps

- In addition to labeling vertices with colours, they are labeled with discovery and finishing times.
- Time is an integer that is incremented whenever a vertex changes state
- from unexplored to discovered
- from discovered to finished
- These discovery and finishing times can then be used to solve other graph problems (e.g., computing strongly-connected components)
- Two timestamps put on every vertex:
- discovery time $d(v) \geq 1$
- finish time $1<f(v) \leq 2 n$

DFS Colors - Advantages

- Time stamps are useful for many purposes
- E.g., Topological Sort - sorting vertices of a directed acyclic graph

DFS Application: Topological Sort

- call $\operatorname{DFS}(G)$ to compute finishing times $f[v]$ for each vertex v
- return the list of vertices sorted in decreasing order of $f[v]$

DFS Application: Path Finding

- We can adapt the DFS algorithm to find a path between vertices u and z
- We call $\operatorname{DFS}(G, u)$ with u as the start vertex
- We use a stack S to keep track of the path between the start vertex and the current vertex
- As soon as destination vertex z is encountered, we return the path as the contents of the stack
- Q: What is the color of the nodes on the path?

DFS Application: Cycle Finding

- We can adapt the DFS algorithm to find a simple cycle
- We use a stack S to keep track of the path between the start vertex and the current vertex
- As soon as a back edge (v, w) is encountered, we return the cycle as the portion of the stack from the top to vertex w

