
EECS 3101A F 19

EECS 3101 A: Design and Analysis of

Algorithms

Suprakash Datta
Office: LAS 3043

Course page: http://www.eecs.yorku.ca/course/3101A
Also on Moodle

http://www.eecs.yorku.ca/course/3101A

EECS 3101A F 19

Graphs: Definitions and Properties

Definitions - 1

G = (V ,E), V = set of nodes/vertices, E = set of edges

Edges incident on a vertex

Adjacent vertices

degree of a node

neighborhood of a node

Self-loop

EECS 3101A F 19

Graphs: Definitions and Properties

Definitions - 2

Edge Types:

Directed edge: ordered pair of vertices (u, v)
- u : origin, v : destination

Undirected edge: unordered pair of vertices (u, v)

Graph Types:

Directed graph: all the edges are directed

Undirected graph: all the edges are undirected

Paths:

Simple Paths

Cycles

Simple cycles: no vertex repeated

EECS 3101A F 19

Graphs: Definitions and Properties

Elementary Properties

The sum of degrees is even (equals twice the number of
edges in an undirected graph)

The sum of indegrees equals sum of outdegrees in a
directed graph

In an undirected graph m ≤ n(n−1)
2

What is the bound for directed graphs?

EECS 3101A F 19

Graphs: Definitions and Properties

Subgraphs

A subgraph S of a graph G is a
graph such that

The vertices of S are a
subset of the vertices of G
The edges of S are a subset
of the edges of G

A spanning subgraph of G is a
subgraph that contains all the
vertices of G

Subgraph

Spanning subgraph

EECS 3101A F 19

Graphs: Definitions and Properties

Connected graphs

A graph is connected if there is
a path between every pair of
vertices
A connected component of a
graph G is a maximal
connected subgraph of G

Connected graph

Disconnected graph with
two connected
components

EECS 3101A F 19

Graphs: Definitions and Properties

Trees

A tree is a connected, acyclic, undirected graph

A forest is a set of trees (not necessarily connected)

Tree, forest, a cyclic graph

EECS 3101A F 19

Graphs: Definitions and Properties

Spanning Trees

A spanning tree of a connected
graph is a spanning subgraph
that is a tree
A spanning tree is not unique
unless the graph is a tree
Spanning trees have
applications to the design of
communication networks
A spanning forest of a graph is
a spanning subgraph that is a
forest

graph

Spanning tree

EECS 3101A F 19

Graphs: Definitions and Properties

Graph Representations

Graph Representations

Edge list

Adjacency list

Adjacency matrix

EECS 3101A F 19

Graphs: Definitions and Properties

Graph Representations

Edge Lists

Vertex object: reference to
position in vertex sequence
Edge object: origin vertex
object, destination vertex
object, reference to position in
edge sequence
Vertex sequence: sequence of
vertex objects
Edge sequence: sequence of
edge objects

EECS 3101A F 19

Graphs: Definitions and Properties

Graph Representations

Adjacency Lists

Incidence sequence for each
vertex: sequence of references
to edge objects of incident
edges
Augmented edge objects:
references to associated
positions in incidence
sequences of end vertices

EECS 3101A F 19

Graphs: Definitions and Properties

Graph Representations

Adjacency Matrix

Edge list structure
Augmented vertex objects:
Integer key (index) associated
with vertex
2D-array adjacency array:
Reference to edge object for
adjacent vertices, null for non
nonadjacent vertices
The “old fashioned” version
just has 0 for no edge and 1 for
edge

EECS 3101A F 19

Graphs: Definitions and Properties

Graph Problems

Graph Problems

Connectivity: Are all vertices reachable from each other?

Reachability: Is a node v reachable from a node u?

Shortest Paths

(Sub)graph Isomorphism

Graph Coloring

And many others

EECS 3101A F 19

Graph Algorithms - 2 coloring

Coloring graphs

Basic idea:

Assign colors to nodes

Each edge should connect nodes of different colors

Want to minimize the number of colors used

The minimum number of colors is the property of a
graph, called chromatic number

EECS 3101A F 19

Graph Algorithms - 2 coloring

Bipartite graphs

The set of vertices V can be partitioned into disjoint sets
V1,V2 such that all edges go between V1,V2

A graph is bipartite if and only if it is 2-colorable

How do we know if a graph is 2-colorable?

EECS 3101A F 19

Graph Algorithms - 2 coloring

Greedy Bipartite Graph Coloring - idea

Assumes a connected undirected graph

start at any node and color it red; label it “finished”

color its neighbours blue and label the nodes “started”

consider any node labeled “started”.

if it has a neighbour with the same color, exit with the
message “not bipartite”

else color its uncolored neighbours with the opposite color
and label them “started”; label the current node
“finished”

EECS 3101A F 19

Graph Algorithms - 2 coloring

Greedy Bipartite Graph Coloring - Correctness

Part 1: If the algorithm fails the graph is not 2-colorable

if the graph contains an odd cycle, it cannot be
2-colorable

if the algorithm fails, the graph contains an odd cycle
Why did the algorithm fail to 2-color? 2 nodes joined by
the edge had the same color. So the distances from the
least common ancestor of the 2 nodes to the nodes are
both even or both odd. Adding the edge between them
creates an odd cycle

Part 2: If the algorithm succeeds the graph is 2-colorable

EECS 3101A F 19

Graph Algorithms - 2 coloring

More on Graph Coloring

Determining if a graph has chromatic number of 1 or 2 is
easy

Determining if a graph has chromatic number 3 is
NP-complete (believed to be intractable)

For special classes of graphs, the chromatic number is
known.

For planar graphs the chromatic number is 4

EECS 3101A F 19

Graph Algorithms - Minimum Spanning Trees

Minimum Spanning Trees (MST)

Undirected, connected graph G = (V ,E)

Weight function w : E → R (assigning cost or length or
other values to edges)

Spanning tree: tree that connects all vertices

Minimum spanning tree: tree T that connects all the
vertices and minimizes w(T) =

∑
(u,v)∈T w(u, v)

EECS 3101A F 19

Graph Algorithms - Minimum Spanning Trees

Minimum Spanning Trees: Questions

Is DP applicable?

Is a greedy strategy applicable?

EECS 3101A F 19

Graph Algorithms - Minimum Spanning Trees

MST: Optimal Substructure

Removing the edge (u, v) partitions T into T1 and T2:
w(T) = w(T1) + w(T2) + w(u, v)

We claim that T1 is the MST of G1 = (V1,E1), the
subgraph of G induced by vertices in T1.

Similarly, T2 is the MST of G2

EECS 3101A F 19

Graph Algorithms - Minimum Spanning Trees

MST: Greedy Choice Property

Greedy choice property: locally optimal (greedy) choice yields
a globally optimal solution

Theorem:

Let G = (V ,E), and let S ⊆ V and

Let (u, v) be min-weight edge in G connecting S to
V − S

Then (u, v) ∈ T for some MST T of G

EECS 3101A F 19

Graph Algorithms - Minimum Spanning Trees

MST: Proof of Greedy Choice Property

Let (u, v) be min-weight edge in G connecting S to
V − S ; suppose (u, v) 6∈ T

look at path from u to v in T

swap (x , y), the first edge on path from u to v in T that
crosses from S to V − S , with (u, v)

this decreases the cost of T - contradiction (T supposed
to be MST)

EECS 3101A F 19

Graph Algorithms - Minimum Spanning Trees

Generic MST Algorithm

Loop invariant: before each iteration, A is a subset of
some MST

Safe edge : edge that preserves the loop invariant

EECS 3101A F 19

Graph Algorithms - Minimum Spanning Trees

Generic MST Algorithm - 2

A cut respects A if no edge of A crosses the cut

Same LI: before each iteration, A is a subset of an MST

Correctness proof in Theorem 23.1 in the text

Many ways to choose cuts

EECS 3101A F 19

Prim’s ALgorithm

Prim’s Algorithm

Vertex based algorithm

Grows one tree T , one vertex at a time

Imagine a “blob” covering the portion of T already
computed

Label the vertices v outside the blob with key [v] = the
minimum weight of an edge connecting v to a vertex in
the blob, key [v] =∞, if no such edge exists

At each iteration, add the minimum weight vertex to T

EECS 3101A F 19

Prim’s ALgorithm

Prim’s Algorithm: Steps

Pseudocode on pg 634

Put all vertices in a priority queue Q with labels ∞

Remove the start vertex and set its label to 0

While Q is not empty, remove the vertex u with the
minimum label and add it to the tree;
For each neighbour v of u in Q, if w(u, v) < label [v], set
label [v] = w(u, v)

EECS 3101A F 19

Prim’s ALgorithm

Prim’s Algorithm: Illustration

EECS 3101A F 19

Prim’s ALgorithm

Prim’s Algorithm: Illustration

EECS 3101A F 19

Prim’s ALgorithm

Prim’s Algorithm: Illustration

EECS 3101A F 19

Prim’s ALgorithm

Prim’s Algorithm: Analysis

Proof of correctness on page 636

Time = O(|V |T (ExtractMin)) + O(|E |T (ModifyKey))

Times depend on PQ implementation

Heap based PQ:
BuildPQ : O(n), ExtractMin and ModifyKey : O(lg n)
So running time:
O(|V | log |V |+ |E | log |V |) = O(|E | log |V |)

With Fibonacci heaps: O(|V | log |V |+ |E |)

EECS 3101A F 19

Kruskal’s ALgorithm

Kruskal’s Algorithm

Edge based algorithm

Add the edges one at a time, in increasing weight order

The algorithm maintains A: a forest of trees. An edge is
accepted it if connects vertices of distinct trees

EECS 3101A F 19

Kruskal’s ALgorithm

Kruskal’s Algorithm: Requirements

We need an ADT that maintains a partition, i.e.,a collection of
disjoint sets
Operations:

MakeSet(S , x): S ← S ∪ {{x}}

Union(Si , Sj): S ← (S − {Si , Sj}) ∪ (Si ∪ Sj)

FindSet(S , x): returns unique Si ∈ S , where x ∈ Si

Good ADT’s for maintaining collections of disjoint sets are
covered in EECS 4101

EECS 3101A F 19

Kruskal’s ALgorithm

Kruskal’s Algorithm: Illustration

EECS 3101A F 19

Kruskal’s ALgorithm

Kruskal’s Algorithm: Illustration

EECS 3101A F 19

Kruskal’s ALgorithm

Kruskal’s Algorithm: Illustration

EECS 3101A F 19

Kruskal’s ALgorithm

Kruskal’s Algorithm: Illustration

EECS 3101A F 19

Kruskal’s ALgorithm

Kruskal’s Algorithm: Analysis

Proof of correctness: easy since minimum weight edge
has to be a safe edge

Sorting the edges O(|E | lg |E |) = O(|E | lg |V |)

O(|E |) calls to FindSet, Union

With advanced data structures, the running time is
O(|E | lg |V |)

EECS 3101A F 19

Graph Search Algorithms

Graphs: Exploration and Searching

Method to explore many key properties of a graph

Nodes that are reachable from a specific node v

Detection of cycles

Extraction of strongly connected components

Topological sorts

Find a path with the minimum number of edges between
two given vertices

Note: Some slides in this presentation have been adapted from
the author’s and Prof Elder’s slides.

EECS 3101A F 19

Graph Search Algorithms

Graph Search Algorithms

Depth-first Search (DFS)

Breadth-first Search (BFS)

EECS 3101A F 19

BFS

Breadth First Search

A general technique for traversing a graph

A BFS traversal of a graph G

Visits all the vertices and edges of G
Determines whether G is connected
Computes the connected components of G
Computes a spanning forest of G

BFS on a graph with |V | vertices and |E | edges takes
Θ(|V |+ |E |) time

BFS can be further extended to solve other graph
problems

Find and report a path with the minimum number of
edges between two given vertices
Cycle detection

EECS 3101A F 19

BFS

Breadth First Search - 2

In BFS exploration takes place on a level or wavefront
consisting of nodes that are all the same distance from
the source s

We can label these successive wavefronts by their
distance: L0, L1, . . .

EECS 3101A F 19

BFS

Breadth First Search - 3

Input: directed or undirected graph G = (V ,E), source
vertex s ∈ V

Output: for all v ∈ V

d [v], the shortest distance from s to v
π[v] = u, such that (u, v) is the last edge on the
shortest distance from s to v

Idea: send out search ‘wave’ from s

Keep track of progress by colouring vertices:

Undiscovered vertices are coloured white
Just discovered vertices (on the wavefront) are coloured
grey
Previously discovered vertices (behind wavefront) are
coloured black

EECS 3101A F 19

BFS

Breadth First Search - Example

EECS 3101A F 19

BFS

Breadth First Search - Example

EECS 3101A F 19

BFS

Breadth First Search - Example

EECS 3101A F 19

BFS

Breadth First Search - Algorithm

EECS 3101A F 19

BFS

BFS: Properties

Notation: Gs : connected component containing s

Property 1: BFS(G , s) visits all the vertices and edges of
Gs

Property 2: The discovery edges labeled by BFS(G , s)
form a spanning tree Ts of Gs

Property 3: For any vertex v reachable from s, the path
in the breadth first tree from s to v corresponds to a
shortest path in G

EECS 3101A F 19

BFS

BFS: Analysis

Setting/getting a vertex/edge label takes O(1) time

Vertices are enqueued if there color is white

Assuming that en- and dequeuing takes O(1) time the
total cost of this operation is O(|V |)
Adjacency list of a vertex is scanned when the vertex is
dequeued (and only then ...)

The sum of the lengths of all lists is O(|E |).
Consequently, O(|E |) time is spent on scanning them

Initializing the algorithm takes O(|V |)
Thus BFS runs in Θ(|V |+ |E |) time provided the graph
is represented by an adjacency list structure

EECS 3101A F 19

BFS

BFS Application: Shortest Unweighted Paths

Goal: To recover the shortest paths from a source node s
to all other reachable nodes v in a graph

The length of each path and the paths themselves are
returned

Notes:

There are an exponential number of possible paths

Analogous to level order traversal for trees

This problem is harder for general graphs than trees
because of cycles!

EECS 3101A F 19

DFS

Depth-first Search

A DFS traversal of a graph G

Visits all the vertices and edges of G

Determines whether G is connected

Computes the connected components of G

Computes a spanning forest of G

Find a cycle in the graph

EECS 3101A F 19

DFS

Depth-first Search - 2

DFS: similar to a classic strategy for exploring a maze

EECS 3101A F 19

DFS

Depth-first Search - Steps

We start at vertex s, tying the end of our string to the
point and painting s “visited (discovered)”. Next we label
s as our current vertex called u

Now, we travel along an arbitrary edge (u, v)

If edge (u, v) leads us to an already visited vertex v we
return to u

If vertex v is unvisited, we unroll our string, move to v ,
paint v “visited”, set v as our current vertex, and repeat
the previous steps

EECS 3101A F 19

DFS

Depth-first Search - Steps

Eventually, we will get to a point where all incident edges
on u lead to visited vertices

We then backtrack by unrolling our string to a previously
visited vertex v . Then v becomes our current vertex and
we repeat the previous steps

Then, if all incident edges on v lead to visited vertices, we
backtrack as we did before. We continue to backtrack
along the path we have traveled, finding and exploring
unexplored edges, and repeating the procedure

EECS 3101A F 19

DFS

Depth-first Search - Algorithm

Initialize: color all vertices white

Visit each and every white vertex using DFS − Visit

Each call to DFS − Visit(u) roots a new tree of the
depth-first forest at vertex u

A vertex is white if it is undiscovered

A vertex is gray if it has been discovered but not all of its
edges have been discovered

A vertex is black after all of its adjacent vertices have
been discovered (the adj. list was examined completely)

In addition to, or instead of labeling vertices with colours,
they can be labeled with discovery and finishing times.

EECS 3101A F 19

DFS

Depth-first Search - Algorithm

Time is an integer that is incremented whenever a vertex
changes state

from unexplored to discovered
from discovered to finished

These discovery and finishing times can then be used to
solve other graph problems (e.g., computing
strongly-connected components)

Two timestamps put on every vertex:

discovery time d(v) ≥ 1
finish time 1 < f (v) ≤ 2n

EECS 3101A F 19

DFS

DFS - Example

EECS 3101A F 19

DFS

DFS - Example

EECS 3101A F 19

DFS

DFS - Example

EECS 3101A F 19

DFS

DFS - Algorithm

EECS 3101A F 19

DFS

DFS-Visit - Algorithm

Q: How are the edges classified?

Q: What do back edges signify?

Notice the implicit stack in the code.

EECS 3101A F 19

DFS

DFS: Properties

Property 1:
DFS-Visit(v) visits all the vertices and edges in the
connected component of v

Property 2:
The discovery edges labeled by DFS(v) form a spanning
tree of the connected component of v

EECS 3101A F 19

DFS

DFS: Analysis

Setting/getting a vertex/edge label takes O(1) time

Each vertex is labeled twice

once as UNEXPLORED
once as VISITED

Each edge is labeled twice

once as UNEXPLORED once as DISCOVERY or BACK

Method DFS-Visit is called once for each vertex

DFS runs in θ(n + m) time provided the graph is
represented by the adjacency list structure:
Recall that

∑
v deg(v) = 2m

EECS 3101A F 19

DFS

DFS on Directed Graphs

Tree edges are edges in the depth-first forest Gπ. Edge
(u, v) is a tree edge if v was first discovered by exploring
edge (u, v)

Back edges are those edges (u, v) connecting a vertex u
to an ancestor v in a depth-first tree

Forward edges are non-tree edges (u, v) connecting a
vertex u to a descendant v in a depth-first tree

Cross edges are all other edges. They can go between
vertices in the same depth-first tree, as long as one vertex
is not an ancestor of the other.

Classifying edges can help to identify properties of the
graph, e.g., a graph is acyclic iff DFS yields no back edges

EECS 3101A F 19

DFS

DFS on Undirected Graphs

In a depth-first search of a connected undirected graph,
every edge is either a tree edge or a back edge

EECS 3101A F 19

DFS

DFS: Timestamps

In addition to labeling vertices with colours, they are
labeled with discovery and finishing times.

Time is an integer that is incremented whenever a vertex
changes state

from unexplored to discovered
from discovered to finished

These discovery and finishing times can then be used to
solve other graph problems (e.g., computing
strongly-connected components)

Two timestamps put on every vertex:

discovery time d(v) ≥ 1
finish time 1 < f (v) ≤ 2n

EECS 3101A F 19

DFS

DFS Colors - Advantages

Time stamps are useful for many purposes

E.g., Topological Sort – sorting vertices of a directed
acyclic graph

EECS 3101A F 19

DFS

DFS Applications

DFS Application: Topological Sort

call DFS(G) to compute finishing times f [v] for each
vertex v

return the list of vertices sorted in decreasing order of f [v]

EECS 3101A F 19

DFS

DFS Applications

DFS Application: Path Finding

We can adapt the DFS algorithm to find a path between
vertices u and z

We call DFS(G , u) with u as the start vertex

We use a stack S to keep track of the path between the
start vertex and the current vertex

As soon as destination vertex z is encountered, we return
the path as the contents of the stack

Q: What is the color of the nodes on the path?

EECS 3101A F 19

DFS

DFS Applications

DFS Application: Cycle Finding

We can adapt the DFS algorithm to find a simple cycle

We use a stack S to keep track of the path between the
start vertex and the current vertex

As soon as a back edge (v ,w) is encountered, we return
the cycle as the portion of the stack from the top to
vertex w

	Graphs: Definitions and Properties
	Graph Representations
	Graph Problems

	Graph Algorithms - 2 coloring
	Graph Algorithms - Minimum Spanning Trees
	Prim's ALgorithm
	Kruskal's ALgorithm
	Graph Search Algorithms
	BFS
	DFS
	DFS Applications

