
EECS 3101A F 19

EECS 3101 A: Design and Analysis of

Algorithms

Suprakash Datta
Office: LAS 3043

Course page: http://www.eecs.yorku.ca/course/3101A
Also on Moodle

http://www.eecs.yorku.ca/course/3101A

EECS 3101A F 19

Shortest Paths: Definitions and Properties

Definitions

Shortest path = a path of the minimum weight

Applications: static/dynamic network routing, robot
motion planning,map/route generation in traffic

EECS 3101A F 19

Shortest Paths: Definitions and Properties

Problems

Unweighted shortest-paths – BFS

Single-source, single-destination: Given two vertices, find
a shortest path between them

Single-source, all destinations: Find a shortest path from
a given source (vertex s) to each of the vertices. [Solution
to this problem solves the previous problem efficiently].
Greedy algorithm!

All-pairs Shortest Paths: Find shortest-paths for every
pair of vertices. Dynamic programming algorithm

EECS 3101A F 19

Shortest Paths: Definitions and Properties

Optimal Substructure Property

Theorem: subpaths of shortest paths are shortest paths

Proof (cut and paste): if some subpath were not the
shortest path, one could substitute the shorter subpath
and create a shorter total path

Suggests there are DP and greedy algorithms

EECS 3101A F 19

Shortest Paths: Definitions and Properties

Key operation: Relaxation

For each vertex v in the graph, we maintain d [v], the
estimate of the shortest path from source s, initialized to
∞ at start

Relaxing an edge (u, v) means testing whether we can
improve the shortest path to v found so far by going
through u

EECS 3101A F 19

Dijkstra’s Algorithm

Dijkstra’s Algorithm

Non-negative edge weights

Greedy, similar to Prim’s algorithm for MST

Like breadth-first search (if all weights = 1, one can
simply use BFS)

Use priority queue Q keyed by d [v] (BFS used FIFO
queue, here we use a PQ, which is re-organized whenever
some d [] decreases)

Basic idea

maintain a set S of solved vertices
at each step select “closest” vertex u, add it to S , and
relax all edges from u

EECS 3101A F 19

Dijkstra’s Algorithm

Dijkstra’s Algorithm - pseudocode

Graph G , weight function w , source s

EECS 3101A F 19

Dijkstra’s Algorithm

Dijkstra’s Algorithm - example

EECS 3101A F 19

Dijkstra’s Algorithm

Dijkstra’s Algorithm - example

Correctness idea: a label d [v] is set once, with the correct
value of the shortest distance from s to v

EECS 3101A F 19

Dijkstra’s Algorithm

Dijkstra’s Algorithm - Running Time

Extract-Min executed |V | times

Decrease-Key executed |E | times

Time = |V |TExtract−Min + |E |TDecrease−Key

Time depends on different PQ implementations:
Array-based: Θ(|V |2)
Heap-based: Θ(|E | log |V |)
Fibonacci Heap-based: Θ(|E |+ |V | log |V |)

EECS 3101A F 19

Bellman-Ford Algorithm

Bellman-Ford Algorithm

Dijkstra’s algorithm does not work when there are
negative edges

Intuition: we can not be greedy any more on the
assumption that the lengths of paths will only increase in
the future

Bellman-Ford algorithm detects negative cycles (returns
false) or returns the shortest path-tree

EECS 3101A F 19

Bellman-Ford Algorithm

Bellman-Ford Algorithm - Pseudocode

Running time: Θ(|V ||E |)

EECS 3101A F 19

Bellman-Ford Algorithm

Bellman-Ford Algorithm - Example

EECS 3101A F 19

Bellman-Ford Algorithm

Bellman-Ford Algorithm - Example

Loop invariant: d [] is the shortest path labels over paths that
contain at most i − 1 edges

EECS 3101A F 19

Shortest Paths in DAGs

Shortest Paths in DAGs

Topological sort the graph

Relax all nodes in the topologically sorted order

One round of relaxation instead of |V | − 1

running time O(|E |)

	Shortest Paths: Definitions and Properties
	Dijkstra's Algorithm
	Bellman-Ford Algorithm
	Shortest Paths in DAGs

