EECS 3101 A: Design and Analysis of Algorithms

Suprakash Datta
Office: LAS 3043

Course page: http://www.eecs.yorku.ca/course/3101A
Also on Moodle

Definitions

- Shortest path $=$ a path of the minimum weight
- Applications: static/dynamic network routing, robot motion planning, map/route generation in traffic

Problems

- Unweighted shortest-paths - BFS
- Single-source, single-destination: Given two vertices, find a shortest path between them
- Single-source, all destinations: Find a shortest path from a given source (vertex s) to each of the vertices. [Solution to this problem solves the previous problem efficiently]. Greedy algorithm!
- All-pairs Shortest Paths: Find shortest-paths for every pair of vertices. Dynamic programming algorithm

Optimal Substructure Property

- Theorem: subpaths of shortest paths are shortest paths
- Proof (cut and paste): if some subpath were not the shortest path, one could substitute the shorter subpath and create a shorter total path
- Suggests there are DP and greedy algorithms

Key operation: Relaxation

- For each vertex v in the graph, we maintain $d[v]$, the estimate of the shortest path from source s, initialized to ∞ at start
- Relaxing an edge (u, v) means testing whether we can improve the shortest path to v found so far by going through u

Relax (u,v,w)

```
if d[v] >
    d[u]+w(u,v) then
    d[v]}\leftarrowd[u]+w(u,v
    \pi[v]}\leftarrow
```


Dijkstra's Algorithm

- Non-negative edge weights
- Greedy, similar to Prim's algorithm for MST
- Like breadth-first search (if all weights $=1$, one can simply use BFS)
- Use priority queue Q keyed by $d[v]$ (BFS used FIFO queue, here we use a $P Q$, which is re-organized whenever some $d[]$ decreases)
- Basic idea
- maintain a set S of solved vertices
- at each step select "closest" vertex u, add it to S, and relax all edges from u

Dijkstra's Algorithm - pseudocode

Graph G, weight function w, source s
$\operatorname{DiJKstrA}(G, w, s)$
1 for each $v \in V$
$2 \quad$ do $d[v] \leftarrow \infty$
$3 d[s] \leftarrow 0$
$4 S \leftarrow \emptyset \triangleright$ Set of discovered nodes
$5 Q \leftarrow V$
6 while $Q \neq \emptyset$
$7 \quad$ do $u \leftarrow$ Extract- $\operatorname{Min}(Q)$
$8 \quad S \leftarrow S \cup\{u\}$
$9 \quad$ for each $v \in \operatorname{Adj}[u]$
10
11 do if $d[v]>d[u]+w(u, v)$
then $d[v] \leftarrow d[u]+w(u, v)$

Dijkstra's Algorithm - example

Dijkstra's Algorithm - example

Correctness idea: a label $d[v]$ is set once, with the correct value of the shortest distance from s to v

Dijkstra's Algorithm - Running Time

- Extract-Min executed $|V|$ times
- Decrease-Key executed $|E|$ times
- Time $=|V| T_{\text {Extract-Min }}+|E| T_{\text {Decrease-Key }}$
- Time depends on different PQ implementations:

Array-based: $\Theta\left(|V|^{2}\right)$ Heap-based: $\Theta(|E| \log |V|)$
Fibonacci Heap-based: $\Theta(|E|+|V| \log |V|)$

Bellman-Ford Algorithm

- Dijkstra's algorithm does not work when there are negative edges
- Intuition: we can not be greedy any more on the assumption that the lengths of paths will only increase in the future
- Bellman-Ford algorithm detects negative cycles (returns false) or returns the shortest path-tree

Bellman-Ford Algorithm - Pseudocode

```
Bellman-Ford (G,w,s)
01 for each \(v \in V[G]\)
\(02 \mathrm{~d}[\mathrm{v}] \leftarrow \infty\)
\(03 \mathrm{~d}[\mathrm{~s}] \leftarrow 0\)
\(04 \pi[\mathrm{~s}] \leftarrow \mathrm{NIL}\)
05 for \(i \leftarrow 1\) to \(|V[G]|-1\) do
06 for each edge \((u, v) \in E[G]\) do
07 Relax (u,v,w)
08 for each edge \((u, v) \in E[G]\) do
09 if \(d[v]>d[u]+w(u, v)\) then return false
10 return true
```

Running time: $\Theta(|V||E|)$

Bellman-Ford Algorithm - Example

Bellman-Ford Algorithm - Example

Loop invariant: $d[]$ is the shortest path labels over paths that contain at most $i-1$ edges

Shortest Paths in DAGs

- Topological sort the graph
- Relax all nodes in the topologically sorted order
- One round of relaxation instead of $|V|-1$
- running time $O(|E|)$

