EECS 3101A F 19

EECS 3101 A: Design and Analysis of
Algorithms

Suprakash Datta
Office: LAS 3043

Course page: http://www.eecs.yorku.ca/course/3101A
Also on Moodle

http://www.eecs.yorku.ca/course/3101A

EECS 3101A F 19

Shortest Paths: Definitions and Properties

Definitions

@ Shortest path = a path of the minimum weight

@ Applications: static/dynamic network routing, robot
motion planning,map/route generation in traffic

EECS 3101A F 19

Shortest Paths: Definitions and Properties

Problems

@ Unweighted shortest-paths — BFS

@ Single-source, single-destination: Given two vertices, find
a shortest path between them

@ Single-source, all destinations: Find a shortest path from
a given source (vertex s) to each of the vertices. [Solution
to this problem solves the previous problem efficiently].
Greedy algorithm!

@ All-pairs Shortest Paths: Find shortest-paths for every
pair of vertices. Dynamic programming algorithm

EECS 3101A F 19

Shortest Paths: Definitions and Properties

Optimal Substructure Property

@ Theorem: subpaths of shortest paths are shortest paths

@ Proof (cut and paste): if some subpath were not the
shortest path, one could substitute the shorter subpath
and create a shorter total path

@ Suggests there are DP and greedy algorithms

EECS 3101A F 19

Key operation: Relaxation

@ For each vertex v in the graph, we maintain d[v], the
estimate of the shortest path from source s, initialized to

o0 at start

@ Relaxing an edge (u, v) means testing whether we can
improve the shortest path to v found so far by going
through u

Relax (u,v,w)

if d[v] > v S, Y
d[ul+w(u, v)then @

d[v] <« d[ul+ I Relax(u,v) l
n[v] < u

2

EECS 3101A F 19

Dijkstra’s Algorithm

@ Non-negative edge weights
@ Greedy, similar to Prim’s algorithm for MST

o Like breadth-first search (if all weights = 1, one can
simply use BFS)
@ Use priority queue Q keyed by d[v] (BFS used FIFO

queue, here we use a PQ, which is re-organized whenever
some d[] decreases)

@ Basic idea
e maintain a set S of solved vertices
e at each step select “closest” vertex u, add it to S, and
relax all edges from u

EECS 3101A F 19

Dijkstra’s Algorithm

Dijkstra’s Algorithm - pseudocode

Graph G, weight function w, source s

DIJKSTRA(G, w, s)
1 foreachv eV
2 do d[v] «— o0
3 d[s] =0
1S — 0 > Setof discovered nodes
5Q<V
while Q # ()
do u «— EXTRACT-MIN(Q)
S — Su{u}
for each v € Adjlu]
doif d[v] > du] + w(u,v)
then d[v] — d[u] + w(u,v)

-] O Ot

—
— O O o

EECS 3101A F 19

Dijkstra’s Algorithm

Dijkstra’s Algorithm - example

EECS 3101A F 19
Dijkstra’s Algorithm

Dijkstra’s Algorithm - example

Correctness idea: a label d[v] is set once, with the correct
value of the shortest distance from s to v

EECS 3101A F 19

Dijkstra’s Algorithm

Dijkstra’s Algorithm - Running Time

@ Extract-Min executed |V/| times

@ Decrease-Key executed |E| times

o Time = |V/|Teuract—min + |E| Tecrease—key

@ Time depends on different PQ implementations:
Array-based: ©(|V|?)

Heap-based: O(|E|log |V|)
Fibonacci Heap-based: ©(|E| + |V|log|V|)

EECS 3101A F 19

Bellman-Ford Algorithm

Bellman-Ford Algorithm

@ Dijkstra's algorithm does not work when there are
negative edges

@ Intuition: we can not be greedy any more on the
assumption that the lengths of paths will only increase in
the future

@ Bellman-Ford algorithm detects negative cycles (returns
false) or returns the shortest path-tree

EECS 3101A F 19

Bellman-Ford Algorithm

Bellman-Ford Algorithm - Pseudocode

Bellman-Ford (G, w, s)

01 for each v € V[G]

02 d[v] « o

03 d[s] « O

04 m[s] <« NIL

05 for i <« 1 to |V[G]|-1 do

06 for each edge (u,v) € E[G] do

07 Relax (u,v,w)

08 for each edge (u,v) € E[G] do

09 if d[v] > d[u] + w(u,v) then return false

10 return true

Running time: ©(|V||E|)

Bellman-Ford Algorithm - Example

7o) AN N N
- '~ - @1~

MN MN

y
t

£
N,

EECS 3101A F 19
Bellman-Ford Algorithm

Bellman-Ford Algorithm - Example

Loop invariant: d[] is the shortest path labels over paths that
contain at most / — 1 edges

EECS 3101A F 19

Shortest Paths in DAGs

Shortest Paths in DAGs

@ Topological sort the graph

@ Relax all nodes in the topologically sorted order

@ One round of relaxation instead of |V|—1

@ running time O(|E|)

	Shortest Paths: Definitions and Properties
	Dijkstra's Algorithm
	Bellman-Ford Algorithm
	Shortest Paths in DAGs

