EECS 3101 A: Design and Analysis of Algorithms

Suprakash Datta
Office: LAS 3043

Course page: http://www.eecs.yorku.ca/course/3101A
Also on Moodle

Recall: Divide-and-Conquer

- Divide: If the input size is too large to deal with in a straightforward manner, divide the problem into two or more disjoint subproblems
- Conquer: Use divide and conquer recursively to solve the subproblems
- Combine: Take the solutions to the subproblems and "merge" these solutions into a solution for the original problem

This works when the subproblems are independent

Computing Fibonacci Numbers

- $F_{0}=0, F_{1}=1$ and for $n>1, F_{n}=F_{n-1}+F_{n-2}$
- $0,1,1,2,3,5,8,13,21,34 \ldots$
- Straightforward recursive procedure:

Fibonacci (n)
1 if $n \leq 1$
2 return n
3 else return $\operatorname{Fib}[n-1]+\operatorname{Fib}[n-2]$
This is slow!

- Why? How slow? Let's draw the recursion tree ...

Computing Fibonacci Numbers - 2

The same subproblems are solved over and over! We can show that the running time is exponential

Computing Fibonacci Numbers - 3

Options:

- Do not use recursion

Fibonacci(n)
$1 \quad \operatorname{Fib}[0]=0$
2 Fib[1] $=1$
3 for $i=2$ to n
$4 \quad \operatorname{Fib}[i]=\operatorname{Fib}[i-1]+\operatorname{Fib}[i-2]$

- Use recursion but store each computed value For each recursive call, lookup value if available, else compute it and store

Computing Fibonacci Numbers - Lessons

Options:

- We were able to reduce redundant computation by evaluating the recurrence in a certain order, and remembering previous values.
- This is called memoization (no typo). This is used very often in dynamic programming.

Dynamic Programming (DP)

What is it?

- An algorithmic paradigm
- Used most often for solving optimization problems (we will see some other uses)
- The word "programming" does not refer to computer programming
- Some problems are solved more efficiently using this technique, but others are not
- We will look at several examples where DP works well

Example 1: Optimizing an Itinerary

- We want to go from city 0 to city n using buses
- The only connecting road goes through cities $1,2, \ldots, n-1$
- The cost of going from city i to city j is $c_{i j}$
- Assume monotonic paths only (all edges go forward)
- What is the minimum cost of going from 0 to n ?

Example 2: A Parsing Problem

Suppose we encode text using the following:
$a: 1, b: 2, \ldots, y: 25, z: 26$.

- Note that the code for b is a prefix for the code for y. So, this is not a prefix-free code
- So parsing is ambiguous:

Given 1125: possible decodings are aabe, aay, ale, kbe, ky

- Problem: Given a string of digits, find the number of valid decodings.

Example 3: Counting Paths on Lattices

You are given a $m \times n$ lattice of points. Starting from the top left corner, you are required to take right and down steps to reach the bottom right corner

- Q: How many different paths are there?

A: There is an analytical solution

- Suppose that some of the lattice points are marked "no entry"
- Problem: How many different paths are there that avoid these points?

Return to example 1: Optimizing an Itinerary

What is the minimum cost of going from 0 to n ?

- This is an optimization (minimization) problem
- Exponential number of paths possible (2 choices at each station - may or may not change buses there, $n-1$ stations)
- Important property: The optimal cost of going from (say) 2 to 9 has no relation with the same from 11 to 16.
- This independence of subproblems is crucial
- The solution constitutes of a sequence of choices

Optimizing an Itinerary: Ideas

- Step 1: Define subproblems

We want to make local choices and remember them systematically. Let $T(j)$ be the minimum cost of going from city 0 to city j. So $T(n)$ is the answer.

- What can we say about T(j)?
- Step 2: Express solution recursively

Suppose someone tells you the best last choice (go from i to n). Does it help?

- Recursively, you can assume you know the best way to go from 0 to i.
- Then you can glue the solutions together and get the optimal solution!

Optimizing an Itinerary: Ideas - 2

- The best way to go from 0 to i is $T(i)$, and $T(i)$ is a smaller subproblem than $T(n)$.
Aside: When did $T(i)$ go from a cost to a subproblem?
- Then the recursion is $T(n)=c_{i n}+T(i)$
- In reality, we do not know the best last choice
- So we take the minimum over all last choice possibilities!

$$
T(j)=\min _{k}\left[c_{k j}+T(k)\right], k<j
$$

Optimizing an Itinerary: Algorithm

$T(0)=0$ and for $j>0, T(j)=\min _{k}\left[c_{k j}+T(k)\right], k<j$

- Hopefully we can systematically compute $T(j)$ and get an efficient (polynomial-time) algorithm
- If we do naive recursion, we have the same problems as before
- We can memoize, or
- We can start from $T(1) . T(1)=c_{01}$ because there is only one way to get to 1 . Then we compute $T(2), T(3), \ldots$ using the recursion above until we reach $T(n)$

Optimizing an Itinerary: Getting the full solution

- $T(n)=$ minimum cost of going from 0 to n. What is the sequence of cities?
- Need to remember more information; Specifically the sequence of choices made.
- $T(j)=\min _{k}\left[c_{k j}+T(k)\right], k<j$
$C(j)=\arg \min k$
- What's the last choice? $C(n)$
- What's the next one? $C(C(n))$!
- The next one is $C(C(C(n)))$. The next one is $C(C(C(C(n))))$. Keep going until you hit 0 .

Optimizing an Itinerary: Analysis

- Correctness: Defer for later
- Running time:

Computing $T(j)$ takes $\Theta(j)$ time. Computing $C(j)$ takes $O(1)$ time. So the algorithm takes $\Theta\left(n^{2}\right)$ time.

Optimizing an Itinerary: Other DP formulations

- Let $S(i, j)$ be the minimum cost of going from city i to city j. So $S(0, n)$ is the answer.
- How does the efficiency compare with the previous formulation?

An Activity Selection Problem

- Two assembly lines, A_{i}, B_{i}, each with n stations
- Each job must complete go through A_{i} or B_{i} for each i
- Different costs for going from A_{i} to B_{i+1}, A_{i} to A_{i+1}, B_{i} to B_{i+1}, B_{i} to A_{i+1}, start to A_{1}, start to B_{1}, A_{n} to exit, B_{n} to exit.

An Activity Selection Problem - 2

- Exponential number of paths possible (2 choices, n stations)
- Again, suppose you know the first choice. Does that help?
- Can we express the cost recursively?
- Add the costs of the first choice and the best path for the remainder of the job
- Because we do not know the best first choice, we take the minimum over all the possible ones

An Activity Selection Problem - Algorithm

Define $f_{1}[j]$ to be the cost of going to the $j^{t h}$ station on assembly line 1 from the start. Define $f_{2}[j]$ similarly for assembly line 2. Then:

$$
f_{1}[j]=\left\{\begin{array}{l}
e_{1}+a_{1,1}, \text { if } j=1 \\
\min \left[f_{1}[j-1]+a_{1, j}, f_{2}[j-1]+t_{2, j-1}+a_{1, j}\right] \text { if } j>1
\end{array}\right.
$$

- Similarly for $f_{2}[j]$
- Finally, $f^{*}=\min \left[f_{1}[n]+x_{1}, f_{2}[n]+x_{2}\right]$

Activity Selection - Constructing Solutions

- Remember the choices made in an array I[]

PRINT-STATIONS (l, n)
$1 \quad i \leftarrow l^{*}$
2 print "line " i ", station " n
3 for $j \leftarrow n$ downto 2
$4 \quad$ do $i \leftarrow l_{i}[j]$
5 print "line " i ", station " $j-1$

- Running Time: Constant amount of work to compute $f_{1}[j], f_{2}[j]$, for each j, and for f^{*}. Total running time $\Theta(n)$.

