EECS 3101A F 19

EECS 3101 A: Design and Analysis of
Algorithms

Suprakash Datta
Office: LAS 3043

Course page: http://www.eecs.yorku.ca/course/3101A
Also on Moodle

http://www.eecs.yorku.ca/course/3101A

EECS 3101A F 19

Background

Recall: Divide-and-Conquer

@ Divide: If the input size is too large to deal with in a
straightforward manner, divide the problem into two or
more disjoint subproblems

@ Conquer: Use divide and conquer recursively to solve the
subproblems

@ Combine: Take the solutions to the subproblems and
“merge” these solutions into a solution for the original
problem

This works when the subproblems are independent

EECS 3101A F 19

Background

Computing Fibonacci Numbers

0F0:0,F1:13ndforn>1, Fn:Fn71+an2
e0,1,1,23,5,8,13, 21, 34 ...

@ Straightforward recursive procedure:

FiBoNacci(n)
1 ifn<l1
2 return n

3 else return Fib[n — 1] + Fib[n — 2]

This is slow!

@ Why? How slow? Let's draw the recursion tree ...

EECS 3101A F 19

Background

Computing Fibonacci Numbers - 2

The same subproblems are solved over and over!
We can show that the running time is exponential

EECS 3101A F 19

Background

Computing Fibonacci Numbers - 3

Options:
@ Do not use recursion
FiBoNAcCcCI(n)
1 Fib[0] =0
2 Fib[l] =1
3 fori=2ton
4 Fib[i] = Fib[i — 1] + Fib[i — 2]

@ Use recursion but store each computed value
For each recursive call, lookup value if available, else
compute it and store

EECS 3101A F 19

Background

Computing Fibonacci Numbers - Lessons

Options:
@ We were able to reduce redundant computation by

evaluating the recurrence in a certain order, and
remembering previous values.

@ This is called memoization (no typo). This is used very
often in dynamic programming.

EECS 3101A F 19

Dynamic Programming (DP)

What is it?
@ An algorithmic paradigm

@ Used most often for solving optimization problems
(we will see some other uses)

@ The word “programming” does not refer to computer
programming

@ Some problems are solved more efficiently using this
technique, but others are not

@ We will look at several examples where DP works well

EECS 3101A F 19

Dynamic Programming

Example 1: Optimizing an ltinerary

@ We want to go from city 0 to city n using buses

@ The only connecting road goes through cities
1,2,...,n—1

@ The cost of going from city / to city j is ¢;
@ Assume monotonic paths only (all edges go forward)

@ What is the minimum cost of going from 0 to n?

EECS 3101A F 19

Example 2: A Parsing Problem

Suppose we encode text using the following:
a:1,b:2,...,y:25,z:26.
@ Note that the code for b is a prefix for the code for y.
So, this is not a prefix-free code

@ So parsing is ambiguous:
Given 1125: possible decodings are aabe, aay, ale, kbe, ky

@ Problem: Given a string of digits, find the number of
valid decodings.

EECS 3101A F 19

Dynamic Programming

Example 3: Counting Paths on Lattices

You are given a m X n lattice of points. Starting from the top
left corner, you are required to take right and down steps to
reach the bottom right corner

@ Q: How many different paths are there?
A: There is an analytical solution

@ Suppose that some of the lattice points are marked “no
entry”

@ Problem: How many different paths are there that avoid
these points?

EECS 3101A F 19

Dynamic Programming

Return to example 1: Optimizing an ltinerary

What is the minimum cost of going from 0 to n?

@ This is an optimization (minimization) problem

@ Exponential number of paths possible (2 choices at each
station — may or may not change buses there, n — 1
stations)

@ Important property: The optimal cost of going from (say)
2 to 9 has no relation with the same from 11 to 16.

@ This independence of subproblems is crucial

@ The solution constitutes of a sequence of choices

EECS 3101A F 19

Optimizing an lItinerary: Ideas

@ Step 1: Define subproblems
We want to make local choices and remember them
systematically. Let T(j) be the minimum cost of going
from city 0 to city j. So T(n) is the answer.

@ What can we say about T(j)?

@ Step 2: Express solution recursively
Suppose someone tells you the best last choice (go from i
to n). Does it help?

@ Recursively, you can assume you know the best way to go
from 0O to J.

@ Then you can glue the solutions together and get the
optimal solution!

EECS 3101A F 19

Dynamic Programming

Optimizing an ltinerary: Ideas - 2

@ The best way to go from 0 to i is T(i), and T(i) is a
smaller subproblem than T(n).

Aside: When did T (/) go from a cost to a subproblem?

@ Then the recursion is T(n) = ¢ + T(i)
@ In reality, we do not know the best last choice

@ So we take the minimum over all last choice possibilities!

T(j) = mkin [ij -+ T(k)] , k <j

EECS 3101A F 19

Dynamic Programming

Optimizing an lItinerary: Algorithm

T(0) =0 and for j > 0, T(j) = ming [cxj + T(k)], k <
@ Hopefully we can systematically compute T(j) and get an
efficient (polynomial-time) algorithm

@ If we do naive recursion, we have the same problems as
before

@ We can memoize, or

@ We can start from T(1). T(1) = co; because there is only
one way to get to 1. Then we compute T(2), T(3),...
using the recursion above until we reach T(n)

EECS 3101A F 19

Dynamic Programming

Optimizing an lItinerary: Getting the full solution

@ T(n) = minimum cost of going from 0 to n. What is the
sequence of cities?

@ Need to remember more information; Specifically the
sequence of choices made.

] T(j) = mink[ij + T(k)], k<j
C(j) = arg min k

@ What's the last choice? C(n)
@ What's the next one? C(C(n)) !

@ The next one is C(C(C(n))). The next one is
C(C(C(C(n))))- Keep going until you hit 0.

EECS 3101A F 19

Dynamic Programming

Optimizing an Itinerary: Analysis

@ Correctness: Defer for later

@ Running time:
Computing T(j) takes ©(j) time. Computing C(j) takes
O(1) time. So the algorithm takes ©(n?) time.

EECS 3101A F 19

Dynamic Programming

Optimizing an Itinerary: Other DP formulations

@ Let S(/,j) be the minimum cost of going from city i to
city j. So 5(0, n) is the answer.

@ How does the efficiency compare with the previous
formulation?

EECS 3101A F 19

Dynamic Programming

An Activity Selection Problem

@ Two assembly lines, A;, B;, each with n stations
@ Each job must complete go through A; or B; for each i
@ Different costs for going from A; to Bi11, A; to A1, B

to Bj11, Bi to Aj41, start to Ay, start to By, A, to exit,
B, to exit.

station §;; stationS;, station§, 3

station § 4 station §, , | station §;
. s S
assembly line 1 f{ay,; a a3 a4
- \ \ / N =~
Fii \ / B\ / \)
@ v/ N /N /N - ()
& Py / & / N / \/ \
(ha)/ (i2)/ (ha)/ / ’erl, completed
chassis / \,,,g e / // o/ 0
enters P\ -4\ 2
\ (n 1)
\
N
A
l
assembly line 2 m;
station S, station ;. station §, 3

station §, 4 station 8, ,, station S, ,

EECS 3101A F 19

Dynamic Programming

An Activity Selection Problem - 2

@ Exponential number of paths possible (2 choices, n
stations)

@ Again, suppose you know the first choice. Does that help?
@ Can we express the cost recursively?

@ Add the costs of the first choice and the best path for the
remainder of the job

@ Because we do not know the best first choice, we take the
minimum over all the possible ones

EECS 3101A F 19

Dynamic Programming

An Activity Selection Problem - Algorithm

Define £1[j] to be the cost of going to the j* station on
assembly line 1 from the start. Define £[j] similarly for
assembly line 2. Then:

fLI]_ e+ aia, lf_j:].
e min[fl[j—1]—|—31,j,f2U—1]—|—t2’j,1+81J]if_j>1

e Similarly for f[j]

e Finally, f* = min[f[n] + x1, 2[n] + x2]

EECS 3101A F 19

Dynamic Programming

Activity Selection - Constructing Solutions

@ Remember the choices made in an array /[|

PRINT-STATIONS (I, 1)

1l i< I
2 print illine i station” n
3 for j < n downto 2
4 doi « [;[]]
o 5 print “line ” i *, station ” j — 1

@ Running Time: Constant amount of work to compute
fi[j], 2[j], for each j, and for f*. Total running time ©(n).

	Background
	Dynamic Programming

