
EECS 3101A F 19

EECS 3101 A: Design and Analysis of

Algorithms

Suprakash Datta
Office: LAS 3043

Course page: http://www.eecs.yorku.ca/course/3101A
Also on Moodle

http://www.eecs.yorku.ca/course/3101A


EECS 3101A F 19

Background

Recall: Divide-and-Conquer

Divide: If the input size is too large to deal with in a
straightforward manner, divide the problem into two or
more disjoint subproblems

Conquer: Use divide and conquer recursively to solve the
subproblems

Combine: Take the solutions to the subproblems and
“merge” these solutions into a solution for the original
problem

This works when the subproblems are independent



EECS 3101A F 19

Background

Computing Fibonacci Numbers

F0 = 0,F1 = 1 and for n > 1, Fn = Fn−1 + Fn−2

0, 1, 1, 2, 3, 5, 8, 13, 21, 34 . . .

Straightforward recursive procedure:

Fibonacci(n)

1 if n ≤ 1
2 return n
3 else return Fib[n − 1] + Fib[n − 2]

This is slow!

Why? How slow? Let’s draw the recursion tree ...



EECS 3101A F 19

Background

Computing Fibonacci Numbers - 2

The same subproblems are solved over and over!
We can show that the running time is exponential



EECS 3101A F 19

Background

Computing Fibonacci Numbers - 3

Options:

Do not use recursion

Fibonacci(n)

1 Fib[0] = 0
2 Fib[1] = 1
3 for i = 2 to n
4 Fib[i ] = Fib[i − 1] + Fib[i − 2]

Use recursion but store each computed value
For each recursive call, lookup value if available, else
compute it and store



EECS 3101A F 19

Background

Computing Fibonacci Numbers - Lessons

Options:

We were able to reduce redundant computation by
evaluating the recurrence in a certain order, and
remembering previous values.

This is called memoization (no typo). This is used very
often in dynamic programming.



EECS 3101A F 19

Dynamic Programming

Dynamic Programming (DP)

What is it?

An algorithmic paradigm

Used most often for solving optimization problems
(we will see some other uses)

The word “programming” does not refer to computer
programming

Some problems are solved more efficiently using this
technique, but others are not

We will look at several examples where DP works well



EECS 3101A F 19

Dynamic Programming

Example 1: Optimizing an Itinerary

We want to go from city 0 to city n using buses

The only connecting road goes through cities
1, 2, . . . , n − 1

The cost of going from city i to city j is cij

Assume monotonic paths only (all edges go forward)

What is the minimum cost of going from 0 to n?



EECS 3101A F 19

Dynamic Programming

Example 2: A Parsing Problem

Suppose we encode text using the following:
a : 1, b : 2, . . . , y : 25, z : 26.

Note that the code for b is a prefix for the code for y .
So, this is not a prefix-free code

So parsing is ambiguous:
Given 1125: possible decodings are aabe, aay , ale, kbe, ky

Problem: Given a string of digits, find the number of
valid decodings.



EECS 3101A F 19

Dynamic Programming

Example 3: Counting Paths on Lattices

You are given a m × n lattice of points. Starting from the top
left corner, you are required to take right and down steps to
reach the bottom right corner

Q: How many different paths are there?
A: There is an analytical solution

Suppose that some of the lattice points are marked “no
entry”

Problem: How many different paths are there that avoid
these points?



EECS 3101A F 19

Dynamic Programming

Return to example 1: Optimizing an Itinerary

What is the minimum cost of going from 0 to n?

This is an optimization (minimization) problem

Exponential number of paths possible (2 choices at each
station – may or may not change buses there, n − 1
stations)

Important property: The optimal cost of going from (say)
2 to 9 has no relation with the same from 11 to 16.

This independence of subproblems is crucial

The solution constitutes of a sequence of choices



EECS 3101A F 19

Dynamic Programming

Optimizing an Itinerary: Ideas

Step 1: Define subproblems
We want to make local choices and remember them
systematically. Let T (j) be the minimum cost of going
from city 0 to city j . So T (n) is the answer.

What can we say about T(j)?

Step 2: Express solution recursively
Suppose someone tells you the best last choice (go from i
to n). Does it help?

Recursively, you can assume you know the best way to go
from 0 to i .

Then you can glue the solutions together and get the
optimal solution!



EECS 3101A F 19

Dynamic Programming

Optimizing an Itinerary: Ideas - 2

The best way to go from 0 to i is T (i), and T (i) is a
smaller subproblem than T (n).

Aside: When did T (i) go from a cost to a subproblem?

Then the recursion is T (n) = cin + T (i)

In reality, we do not know the best last choice

So we take the minimum over all last choice possibilities!

T (j) = min
k

[ckj + T (k)] , k < j



EECS 3101A F 19

Dynamic Programming

Optimizing an Itinerary: Algorithm

T (0) = 0 and for j > 0, T (j) = mink [ckj + T (k)] , k < j

Hopefully we can systematically compute T (j) and get an
efficient (polynomial-time) algorithm

If we do naive recursion, we have the same problems as
before

We can memoize, or

We can start from T (1). T (1) = c01 because there is only
one way to get to 1. Then we compute T (2),T (3), . . .
using the recursion above until we reach T (n)



EECS 3101A F 19

Dynamic Programming

Optimizing an Itinerary: Getting the full solution

T (n) = minimum cost of going from 0 to n. What is the
sequence of cities?

Need to remember more information; Specifically the
sequence of choices made.

T (j) = mink [ckj + T (k)], k < j
C (j) = arg min k

What’s the last choice? C (n)

What’s the next one? C (C (n)) !

The next one is C (C (C (n))). The next one is
C (C (C (C (n)))). Keep going until you hit 0.



EECS 3101A F 19

Dynamic Programming

Optimizing an Itinerary: Analysis

Correctness: Defer for later

Running time:
Computing T (j) takes Θ(j) time. Computing C (j) takes
O(1) time. So the algorithm takes Θ(n2) time.



EECS 3101A F 19

Dynamic Programming

Optimizing an Itinerary: Other DP formulations

Let S(i , j) be the minimum cost of going from city i to
city j . So S(0, n) is the answer.

How does the efficiency compare with the previous
formulation?



EECS 3101A F 19

Dynamic Programming

An Activity Selection Problem

Two assembly lines, Ai ,Bi , each with n stations

Each job must complete go through Ai or Bi for each i

Different costs for going from Ai to Bi+1, Ai to Ai+1, Bi

to Bi+1 , Bi to Ai+1, start to A1, start to B1, An to exit,
Bn to exit.



EECS 3101A F 19

Dynamic Programming

An Activity Selection Problem - 2

Exponential number of paths possible (2 choices, n
stations)

Again, suppose you know the first choice. Does that help?

Can we express the cost recursively?

Add the costs of the first choice and the best path for the
remainder of the job

Because we do not know the best first choice, we take the
minimum over all the possible ones



EECS 3101A F 19

Dynamic Programming

An Activity Selection Problem - Algorithm

Define f1[j ] to be the cost of going to the j th station on
assembly line 1 from the start. Define f2[j ] similarly for
assembly line 2. Then:

f1[j ] =

{
e1 + a1,1, if j = 1

min[f1[j − 1] + a1,j , f2[j − 1] + t2,j−1 + a1,j ] if j > 1

Similarly for f2[j ]

Finally, f ∗ = min[f1[n] + x1, f2[n] + x2]



EECS 3101A F 19

Dynamic Programming

Activity Selection - Constructing Solutions

Remember the choices made in an array l []

Running Time: Constant amount of work to compute
f1[j ], f2[j ], for each j , and for f ∗. Total running time Θ(n).


	Background
	Dynamic Programming

