EECS 3101A F19

EECS 3101 A: Design and Analysis of
Algorithms

Suprakash Datta
Office: LAS 3043

Course page: http://www.eecs.yorku.ca/course/3101A
Also on Moodle

http://www.eecs.yorku.ca/course/3101A

EECS 3101A F19

More Dynamic Programming

Optimal Matrix Multiplication

@ Recall: Two matrices, A: n X m matrix, and B: m x k
matrix, can be multiplied to get C with dimensions n x k,
using nmk scalar multiplications

@ Matrix multiplication is associative: (AB)C = A(BC)

@ Order of multiplication affects efficiency:
e.g.. Ay = 20x30, A, = 30x60, Az = 60x40,
((A1A2)As) : 20x30x60 + 20x60x40 = 84000
(A1(A2A3)) : 20x30x40 + 30x60x40 = 96000

@ Problem: compute A;A, ... A, using the fewest number
of multiplications

EECS 3101A F19

More Dynamic Programming

Alternative View: Optimal Parenthesization

@ Consider Ax Bx Cx D, where Ais30x 1, Bis1 x40,
Cis40 x 10, D is 10 x 25

@ Costs:
o (AB)C)D = 1200 + 12000 + 7500 = 20700
o (AB)(CD) = 1200 + 10000 + 30000 = 41200
o A((BC)D) = 400 + 250 + 750 = 1400
@ We need to optimally parenthesize A; x Ay X ... X A,
where A; is a d;_; X d; matrix

EECS 3101A F19

More Dynamic Programming

Optimal Parenthesization: Details

Let M(i,;) be the minimum number of multiplications
necessary to compute [[}, _; Ax
Observations:

@ The outermost parenthesis partition the chain of matrices
(i,j) at some k, (i < k <j): (Ai... A)(Aks1---A))

@ The optimal parenthesization of matrices (7,) has
optimal parenthesizations on either side of k, i.e., for

matrices (i, k) and (k + 1,)

@ Since we do not know k, we try all possible values

EECS 3101A F19

Optimal Parenthesization: Details - 2

Recurrence:
M(i,i) =0, and for j > i,
M(I,_j) = min;5k<j{l\/l(i, k) —+ M(k + 1,_]) + d,'_ldkdj}

@ A direct recursive implementation takes exponential time
— there is a lot of duplicated work (why?)

o But there are only (3) + n = ©(n?) different
sub-problems (i,), where 1 </ <j<n

@ Thus, it requires only ©(n?) space to store the optimal
cost M(i,j) for each of the sub-problems: about half of a
2-d array M[1..n,1..n].

EECS 3101A F19

More Dynamic Programming

Optimal Parenthesization: Details - 3

Steps of the solution

@ Which array element has the final solution? M[1, n|

@ Which array elements can be initialized directly? M[i, i]
forl1<i<n

@ What order should the table be filled?
Tricky: the RHS of the recurrence must be available when
LHS is evaluated
So, the table must be filled diagonally

EECS 3101A F19

More Dynamic Programming

Optimal Parenthesization: Details - 4

Algorithm: Starting with the main diagonal, and proceeding
diagonally, fill the upper triangular half of the table

o Complexity: Each entry is computed in O(n) time, so
O(n®) algorithm. Argue that it is ©(n?)

@ A simple recursive algorithm
Print — Optimal — Parenthesization(c, i, j) can be used to
reconstruct an optimal parenthesization.
For this need to record the minimum k found for each
table entry

@ Can also use memoized recursion
Exercise: Hand run the algorithm on d = [10, 20, 3,5, 30]

EECS 3101A F19

More Dynamic Programming

Comments about Dynamic Programming

@ Compute the value of an optimal solution in a bottom-up
fashion, so that you always have the necessary sub-results
pre-computed (or use memoization)

@ Construct an optimal solution from computed information
(which records a sequence of choices made that lead to
an optimal solution)

@ Let us study when this works

EECS 3101A F19

More Dynamic Programming

When does Dynamic Programming Work?

To apply dynamic programming, we have to:

@ Show optimal substructure property — an optimal solution
to the problem contains within it optimal solutions to
sub-problems

@ This is a subtle point. It involves taking an optimal
solution and checking that subproblems are solved
optimally

@ The easiest way is to use a “cut-and-paste” argument

@ Best seen through examples

EECS 3101A F19

More Dynamic Programming

Longest Common Subsequence (LCS)

Background:

@ Computing the similarity between strings is useful in
many applications and areas: e.g. spell checkers, test
retrieval, bioinformatics

e Different applications require different notions of similarity

@ The longest common subsequence is one measure of
similarity

@ Dynamic programming is useful for computing other
measures as well

EECS 3101A F19

More Dynamic Programming

LCS : definitions

@ Z is a subsequence of X, if it is possible to generate Z by
skipping zero or more characters from X

e For example: X = "ACGGTTA”, Y = “"CGTAT",
LCS(X,Y) = "“CGTA" or “"CGTT"

@ To solve a LCS problem we have to find “skips” that
generate LCS(X, Y) from X, and “skips” that generate
LCS(X,Y) from Y

EECS 3101A F19

More Dynamic Programming

LCS: Optimal Substructure

Subtle point: depends on the definition of subproblems.
Here we define LCS(/,) as the subproblem — this is the LCS
of X[1..i], Y[1..j]
@ Let Z[1..k] be the LCS of of X[1..m] and Y|[1..n]
o If X[m] = Y[n], then Z[k] = X[m] = Y[n]. Is
Z[1..(k — 1)] an LCS of X[1..(m—1)], Y[1..(n —1)], i.e.,
LCS(m—1,n—1)7
o If X[m] # Y|[n] and Z[k] # X[m], then
Z=LCS(m—1,n)?
e If X[m] # Y|[n] and Z[k] # Y|[n], then
Z=LCS(m,n—1)?

@ “Cut-and-paste” argument in each of the last 3 steps

EECS 3101A F19

More Dynamic Programming

LCS: Recurrence

Let c[i,j] = [LCS(i,))|

cli,jlj=0ifi=00rj=0

cli,jl=cli—1,j—1]+1if i,j > 0and X[i] = Y[j]

cli,j] = max(c[i — 1,],c[i,j —1]) if i,j > 0 and X[i] # Y]
@ Order of filling cells?

e Complexity?
Constant work per cell

@ Actual LCS can be generated by remembering which
choice gave the maximum, as before

Exercise:Compute LCS of X = "ACGGTTA",Y = “CGTAT"

EECS 3101A F19

The Knapsack Problem

e Given different items (w;,v;), i = 1,..., n, take as much
of each as required so that:
- The total weight capacity W of the knapsack is not
exceeded
- The payoff V from the items is maximized

@ Two versions:
- Continuous: can take real-valued amounts of each item
- Discrete or 0/1: each item must be taken or not taken
(no fractional quantities)

@ A simple greedy algorithm works for the continuous
version (Ch 16)
Algorithm: Take as much as possible of the most valuable
item and continue until the capacity is filled

EECS 3101A F19

0/1 Knapsack: the Greedy Algorithm Fails

— __1
20
L 30 $80
item 3 30§ $120
b3 +
item 2 i
: @ 20| $100
i 30
tent | .
'\ 20] $100 o
o 10y $60
$60 $100 $120 knapsack =$220 = $160 ~ $180 s
(a)) 2

Figure 16.2 The greedy strategy does not work for the 0-1 knapsack problem. (a) The thief must
select a subset of the three items shown whose weight must not exceed 50 pounds, (b) The optimal
subset includes items 2 and 3. Any solution with item 1 is suboptimal, even though item 1 has
the greatest value per pound. (¢) For the fractional knapsack problem, taking the items in order of
greatest value per pound yields an optimal solution.

EECS 3101A F19

More Dynamic Programming

0/1 Knapsack: Optimal Substructure and
Recurrence

@ Optimal substructure: Suppose we know that item n is
selected. Then the solution of the subproblem for
capacity W — w,, must be optimal

@ Subproblem: c[i, w] = max value of knapsack of capacity
w using items 1 through /

@ Recurrence:
cli,w]=0ifi=0o0rw=0
cli,w]=cl[i—1,w]if w; >w,i>0
cli,w] = max[v; + c[i — 1,w — w;], c[i — 1, w]] if
i > 0, w > w;

EECS 3101A F19

More Dynamic Programming

0/1 Knapsack: Details

@ Which array element has the final solution? c[n, W]

@ Which array elements can be initialized directly? c[i, w]
fori=0o0rw=20

@ What order should the table be filled?

e Complexity?
Is this a polynomial time algorithm?

@ How do you get the actual solution?

EECS 3101A F19

More Dynamic Programming

More Dynamic Programming Problems

@ Longest increasing subsequence
@ Coin changing
@ Snowboarding problem

@ More problems in homework, tutorials

EECS 3101A F19

More Dynamic Programming

Longest Increasing Subsequence

To apply dynamic programming, we have to:

@ Given an array of distinct integers, to find the longest
increasing subsequence.

@ Subproblems?
@ Recurrence?

@ Alternative Solution: Use LCS!

EECS 3101A F19

More Dynamic Programming

Coin changing

@ Given an amount and a set of denominations, to make
change with the fewest number of coins.

@ Subproblems?

@ Recurrence?

EECS 3101A F19

More Dynamic Programming

A Grid Problem

Counting number of paths in a grid with blocked intersections

@ Not an optimization problem

@ Similar strategy to previous problems

EECS 3101A F19

More Dynamic Programming

A More Difficult Problem

@ The snow boarding problem : Find the longest path on a
grid. One can slide down from one point to a connected
other one if and only if the height decreases. One point is
connected to another if it's at left, at right, above or

below it.

o Example:
1 2

16 17

15 24

14 23

13 12

@ What order to fill the table?

3

18
25
22
11

4
19
20
21
10

0 N O o1

	More Dynamic Programming
	More Dynamic Programming

