EECS 3101 A: Design and Analysis of Algorithms

Suprakash Datta
 Office: LAS 3043

Course page: http://www.eecs.yorku.ca/course/3101A
Also on Moodle

Optimal Matrix Multiplication

- Recall: Two matrices, A : $n \times m$ matrix, and $B: m \times k$ matrix, can be multiplied to get C with dimensions $n \times k$, using nmk scalar multiplications
- Matrix multiplication is associative: $(A B) C=A(B C)$
- Order of multiplication affects efficiency:
e.g.: $A_{1}=20 \times 30, A_{2}=30 \times 60, A_{3}=60 \times 40$, $\left(\left(A_{1} A_{2}\right) A_{3}\right): 20 \times 30 \times 60+20 \times 60 \times 40=84000$ $\left(A_{1}\left(A_{2} A_{3}\right)\right): 20 \times 30 \times 40+30 \times 60 \times 40=96000$
- Problem: compute $A_{1} A_{2} \ldots A_{n}$ using the fewest number of multiplications

Alternative View: Optimal Parenthesization

- Consider $A \times B \times C \times D$, where A is $30 \times 1, B$ is 1×40, C is $40 \times 10, D$ is 10×25
- Costs:
- $(A B) C) D=1200+12000+7500=20700$
- $(A B)(C D)=1200+10000+30000=41200$
- $A((B C) D)=400+250+750=1400$
- We need to optimally parenthesize $A_{1} \times A_{2} \times \ldots \times A_{n}$, where A_{i} is a $d_{i-1} \times d_{i}$ matrix

Optimal Parenthesization: Details

Let $M(i, j)$ be the minimum number of multiplications necessary to compute $\prod_{k=i}^{j} A_{k}$
Observations:

- The outermost parenthesis partition the chain of matrices (i, j) at some $k,(i \leq k<j):\left(A_{i} \ldots A_{k}\right)\left(A_{k+1} \ldots A_{j}\right)$
- The optimal parenthesization of matrices (i, j) has optimal parenthesizations on either side of k, i.e., for matrices (i, k) and $(k+1, j)$
- Since we do not know k, we try all possible values

Optimal Parenthesization: Details - 2

Recurrence:
$M(i, i)=0$, and for $j>i$,
$M(i, j)=\min _{i \leq k<j}\left\{M(i, k)+M(k+1, j)+d_{i-1} d_{k} d_{j}\right\}$

- A direct recursive implementation takes exponential time - there is a lot of duplicated work (why?)
- But there are only $\binom{n}{2}+n=\Theta\left(n^{2}\right)$ different sub-problems (i, j), where $1 \leq i \leq j \leq n$
- Thus, it requires only $\Theta\left(n^{2}\right)$ space to store the optimal cost $M(i, j)$ for each of the sub-problems: about half of a 2-d array $M[1 . . n, 1 . . n]$.

Optimal Parenthesization: Details - 3

Steps of the solution

- Which array element has the final solution? $M[1, n]$
- Which array elements can be initialized directly? $M[i, i]$ for $1 \leq i \leq n$
- What order should the table be filled?

Tricky: the RHS of the recurrence must be available when LHS is evaluated
So, the table must be filled diagonally

Optimal Parenthesization: Details - 4

Algorithm: Starting with the main diagonal, and proceeding diagonally, fill the upper triangular half of the table

- Complexity: Each entry is computed in $O(n)$ time, so $O\left(n^{3}\right)$ algorithm. Argue that it is $\Theta\left(n^{3}\right)$
- A simple recursive algorithm

Print - Optimal - Parenthesization (c, i, j) can be used to reconstruct an optimal parenthesization.
For this need to record the minimum k found for each table entry

- Can also use memoized recursion

Exercise: Hand run the algorithm on $d=[10,20,3,5,30]$

Comments about Dynamic Programming

- Compute the value of an optimal solution in a bottom-up fashion, so that you always have the necessary sub-results pre-computed (or use memoization)
- Construct an optimal solution from computed information (which records a sequence of choices made that lead to an optimal solution)
- Let us study when this works

When does Dynamic Programming Work?

To apply dynamic programming, we have to:

- Show optimal substructure property - an optimal solution to the problem contains within it optimal solutions to sub-problems
- This is a subtle point. It involves taking an optimal solution and checking that subproblems are solved optimally
- The easiest way is to use a "cut-and-paste" argument
- Best seen through examples

Longest Common Subsequence (LCS)

Background:

- Computing the similarity between strings is useful in many applications and areas: e.g. spell checkers, test retrieval, bioinformatics
- Different applications require different notions of similarity
- The longest common subsequence is one measure of similarity
- Dynamic programming is useful for computing other measures as well

LCS : definitions

- Z is a subsequence of X, if it is possible to generate Z by skipping zero or more characters from X
- For example: $X=$ "ACGGTTA", $Y=$ "CGTAT", $\operatorname{LCS}(X, Y)=$ "CGTA" or "CGTT"
- To solve a LCS problem we have to find "skips" that generate $\operatorname{LCS}(X, Y)$ from X, and "skips" that generate $\operatorname{LCS}(X, Y)$ from Y

LCS: Optimal Substructure

Subtle point: depends on the definition of subproblems. Here we define $\operatorname{LCS}(i, j)$ as the subproblem - this is the LCS of $X[1 . . i], Y[1 . . j]$

- Let $Z[1 . . k]$ be the LCS of of $X[1 . . m]$ and $Y[1 . . n]$
- If $X[m]=Y[n]$, then $Z[k]=X[m]=Y[n]$. Is $Z[1 . .(k-1)]$ an LCS of $X[1 . .(m-1)], Y[1 . .(n-1)]$, i.e., $\operatorname{LCS}(m-1, n-1)$?
- If $X[m] \neq Y[n]$ and $Z[k] \neq X[m]$, then
$Z=\operatorname{LCS}(m-1, n)$?
- If $X[m] \neq Y[n]$ and $Z[k] \neq Y[n]$, then
$Z=\operatorname{LCS}(m, n-1)$?
- "Cut-and-paste" argument in each of the last 3 steps

LCS: Recurrence

Let $c[i, j]=|\operatorname{LCS}(i, j)|$
$c[i, j]=0$ if $i=0$ or $j=0$
$c[i, j]=c[i-1, j-1]+1$ if $i, j>0$ and $X[i]=Y[j]$
$c[i, j]=\max (c[i-1, j], c[i, j-1])$ if $i, j>0$ and $X[i] \neq Y[j]$

- Order of filling cells?
- Complexity?

Constant work per cell

- Actual LCS can be generated by remembering which choice gave the maximum, as before
Exercise:Compute LCS of $X=$ "ACGGTTA", $Y=$ "CGTAT"

The Knapsack Problem

- Given different items $\left(w_{i}, v_{i}\right), i=1, \ldots, n$, take as much of each as required so that:
- The total weight capacity W of the knapsack is not exceeded
- The payoff V from the items is maximized
- Two versions:
- Continuous: can take real-valued amounts of each item
- Discrete or $0 / 1$: each item must be taken or not taken (no fractional quantities)
- A simple greedy algorithm works for the continuous version (Ch 16)
Algorithm: Take as much as possible of the most valuable item and continue until the capacity is filled

0/1 Knapsack: the Greedy Algorithm Fails

(a)

$$
=\$ 220
$$

$=\$ 160$
(b)

(c)

Figure 16.2 The greedy strategy does not work for the 0-1 knapsack problem. (a) The thief must select a subset of the three items shown whose weight must not exceed 50 pounds. (b) The optimal subset includes items 2 and 3. Any solution with item 1 is suboptimal, even though item 1 has the greatest value per pound. (c) For the fractional knapsack problem, taking the items in order of greatest value per pound yields an optimal solution.

0/1 Knapsack: Optimal Substructure and Recurrence

- Optimal substructure: Suppose we know that item n is selected. Then the solution of the subproblem for capacity $W-w_{n}$ must be optimal
- Subproblem: $c[i, w]=$ max value of knapsack of capacity w using items 1 through i
- Recurrence:

$$
\begin{aligned}
& c[i, w]=0 \text { if } i=0 \text { or } w=0 \\
& c[i, w]=c[i-1, w] \text { if } w_{i}>w, i>0 \\
& c[i, w]=\max \left[v_{i}+c\left[i-1, w-w_{i}\right], c[i-1, w]\right] \text { if } \\
& i>0, w \geq w_{i}
\end{aligned}
$$

0/1 Knapsack: Details

- Which array element has the final solution? $c[n, W]$
- Which array elements can be initialized directly? $c[i, w]$ for $i=0$ or $w=0$
- What order should the table be filled?
- Complexity?

Is this a polynomial time algorithm?

- How do you get the actual solution?

More Dynamic Programming Problems

- Longest increasing subsequence
- Coin changing
- Snowboarding problem
- More problems in homework, tutorials

Longest Increasing Subsequence

To apply dynamic programming, we have to:

- Given an array of distinct integers, to find the longest increasing subsequence.
- Subproblems?
- Recurrence?
- Alternative Solution: Use LCS!

Coin changing

- Given an amount and a set of denominations, to make change with the fewest number of coins.
- Subproblems?
- Recurrence?

A Grid Problem

Counting number of paths in a grid with blocked intersections

- Not an optimization problem
- Similar strategy to previous problems

A More Difficult Problem

- The snow boarding problem : Find the longest path on a grid. One can slide down from one point to a connected other one if and only if the height decreases. One point is connected to another if it's at left, at right, above or below it.
- Example:

1	2	3	4	5
16	17	18	19	6
15	24	25	20	7
14	23	22	21	8
13	12	11	10	9

- What order to fill the table?

