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Reasoning about algorithms

Reasoning (formally) about algorithms

I/O specs: Needed for correctness proofs, performance
analysis.
E.g. for sorting in non-decreasing order:
INPUT: A[1 . . . n] - an array of integers
OUTPUT: a permutation B of A such that
B[1] ≤ B[2] ≤ . . . ≤ B[n]

CORRECTNESS: The algorithm satisfies the output
specs for EVERY valid input.

ANALYSIS: Compute the performance of the algorithm,
e.g., in terms of running time
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Reasoning about algorithms

Correctness

How can we show that the algorithm works correctly for
all possible inputs of all possible sizes?

Exhaustive testing not feasible.

Analytical techniques are useful essential here.
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Assertions

Assertions

An assertion is a statement about the state of the
program at a specified point in its execution

May be implemented in code, as an error-check

Types:

Preconditions: Any assumptions that must be true
about the code that follows
Postconditions: The statement of what must be true
about the preceding code
Exit condition: The statement of what must be true to
exit a loop or a method or program
Loop invariants: Some property that holds in each
iteration of the loop, and is useful for proving
correctness of the loop
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Correctness Proofs

Correctness Definition: Code Segment

〈pre − condition〉 ∧ 〈code〉 ⇒ 〈post − condition〉

If the input meets the preconditions, then the output
must meet the post-conditions.

If the input does not meet the preconditions, then
nothing is required.
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Correctness Proofs

Uses

If the assertions can be checked automatically, correctness
checking can be automated

Caveat: undecidability issues

EECS 3311 will teach you to do this in practice
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Correctness Proofs

Proving correctness - A Simple Example

Problem: find the maximum element of an array of integers

Find-max(A)

1 // INPUT: A[1..n] - an array of integers
2 // OUTPUT: an element m of A such that m ≥ A[j ],

for all 1 ≤ j ≤ A.length
3 max = A[1]
4 for j = 2 to A. length
5 if max < A[j ]
6 max = A[j ]
7 return max

Can you think of another algorithm?
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Correctness Proofs

Proof by Contradiction

Proof: Suppose the algorithm is incorrect. Then for some
input A, either

1 max is not an element of A or

2 A has an element A[j ] such that max < A[j ]

max is initialized to and assigned to elements of A – so (1) is
impossible
After the j-th iteration of the for-loop (lines 4 - 6),
max ≥ A[j ]. From lines 5,6, max only increases. Therefore,
upon termination, max ≥ A[j ], which contradicts (2).
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Correctness Proofs

Proof by Contradiction - Remarks

The preceding proof reasons about the whole algorithm

It is possible to prove correctness by induction as well:
this is left as an exercise for you

What if the algorithm was very big and had many
function calls, nested loops, if-then’s and other standard
commands?

For example....
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Correctness Proofs

Proof by Contradiction - Remarks

The preceding proof reasons about the whole algorithm

It is possible to prove correctness by induction as well:
this is left as an exercise for you

What if the algorithm was very big and had many
function calls, nested loops, if-then’s and other standard
commands?

Even proving that the algorithm terminates may be
non-trivial!

Need a simpler, more “modular” strategy.
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Correctness Proofs

Loop Invariants

Correctness Proofs for Loops

Decompose the job into checking:

Pre-condition for the loop is true

Loop Invariant holds for each iteration

Termination condition is met

Upon termination the post-condition holds

Note the similarities with induction.
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Correctness Proofs

Loop Invariants

Proving correctness of FindMax with LI

Find-max(A)

1 // INPUT: A[1..n] - an array of integers
2 // OUTPUT: an element m of A such that m ≥ A[j ],

for all 1 ≤ j ≤ A.length
3 max = A[1]
4 for j = 2 to A. length
5 if max < A[j ]
6 max = A[j ]
7 return max

What is the precondition of the loop?



EECS 3101M W 19

Correctness Proofs

Loop Invariants

Correctness of FindMax: Steps

Show that:

Pre-condition for the loop: max contains A[1]

Loop Invariant for each iteration:
At the beginning of iteration j of the for loop, j ≥ 2, max
contains the maximum of A[1..j − 1]

Termination condition: j = A.length + 1

Partial correctness and Termination implies
post-condition: max is the correct maximum, i.e., of
A[1..A.length].
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Correctness Proofs

Loop Invariants

Proof of the Loop Invariant - Partial Correctness

LI: At the beginning of iteration j of the for loop, max
contains the maximum of A[1..j − 1]

Initialization: max contains A[1], so LI (1) is true

Maintenance: For j ≥ 2, assume LI (j); so before iteration
j , max = maximum of A[1..j − 1]

Case 1: A[j ] = maximum of A[1..j ]. In lines 5-6, max
is set to A[j ]

Case 2: A[j ] is not the maximum of A[1..j ], so the
maximum of A[1..j ] is in A[1..j − 1]. By our
assumption, max already has this value, and
max is unchanged in this iteration.
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Correctness Proofs

Loop Invariants

Proof of the Loop Invariant - Termination

Termination: When the loop terminates, j = A.length + 1
(WHY?)

Partial correctness and Termination imply the
post-condition:
LI: At the beginning of iteration j of the for loop, max
contains the maximum of A[1..j − 1]
At termination: j = A.length + 1
Therefore, max contains the maximum of A[1..A.length]
Therefore, it is the correct maximum
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Correctness Proofs

Loop Invariants

Loop Invariants - Summary

We must show three things about loop invariants:

Initialization – it is true prior to the first iteration

Maintenance – if it is true before an iteration, it remains
true before the next iteration

Termination – when loop terminates the invariant gives a
useful property to show the correctness of the algorithm

Partial Correctness ∧ Termination ⇒ Correctness
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Correctness Proofs

Loop Invariants

What about more complex algorithms?

Insertion-Sort(A)

1 for j = 2 to A. length
2 key = A[j ]
3 // Insert A[j ] into the sorted sequence A[1 . . j − 1].
4 i = j − 1
5 while i > 0 and A[i ] > key
6 A[i + 1] = A[i ]
7 i = i − 1
8 A[i + 1] = key

How to formulate loop invariants (2 loops, so 2 LI needed)

How to prove correctness?
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Correctness Proofs

Loop Invariants

Correctness of Insertion Sort

Insertion-Sort(A)

1 for j = 2 to A. length
2 key = A[j ]
3 // Insert A[j ] into the sorted sequence A[1 . . j − 1].
4 i = j − 1
5 while i > 0 and A[i ] > key
6 A[i + 1] = A[i ]
7 i = i − 1
8 A[i + 1] = key

What is a good loop invariant?
It is easy to write a loop invariant if you understand what
the algorithm does.
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Correctness Proofs

Loop Invariants

Forming Loop Invariants

LI for outer loop:

LI1: at the start of for loop iteration j ,
A[1 . . j − 1] consists of elements originally in A[1 . . j − 1]
but in sorted order

The inner while loop moves elements finds the highest
position k so that A[k] ≤ key and moves A[k + 1 . . j − 1]
one position right without changing their order.
Then, in the outer loop, the key element is inserted into
A[k + 1] so that A[k] ≤ A[k + 1] ≤ A[k + 2].
LI2: at the start of for loop iteration i , key contains A[j ]
and A[i + 2 . . j ] consists of elements originally in
A[i + 1 . . j − 1] but moved one spot to the right and the
original A[i + 1] ≥ key
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Correctness Proofs

Loop Invariants

Correctness of LI2: Initialization

Putting i = j − 1 in LI2, we get the statement
key contains A[j ] and A[j + 1 . . j ] consists of elements
originally in A[j . . j − 1] but moved one spot to the right and
the original A[j ] ≥ key
This is true, because of line 2.
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Correctness Proofs

Loop Invariants

Correctness of LI2: Maintenance

LI2: at the start of for loop iteration i , key contains A[j ] and
A[i + 2 . . j ] consists of elements originally in A[i + 1 . . j − 1]
but moved one spot to the right and the original
A[i + 1] ≥ key

We assume that LI2 holds before iteration i , the loop body
executes and will show that LI2 holds before iteration i − 1
(the loop index is decreasing).
Since the loop body executes we know that i > 0 and
A[i ] > key . Also, key contains A[j ]. The loop body moves
(copies) A[i ] to A[i + 1], and decrements i . So LI2 holds
before iteration i − 1.
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Correctness Proofs

Loop Invariants

Correctness of LI2: Termination and Correctness

The loop terminates when i = 0 or A[i ] ≤ key

Case 1: i = 0: Plugging i = 0 into LI2 we get:
at the start of for loop iteration i , key contains A[j ] and
A[2 . . j ] consists of elements originally in A[1 . . j − 1] but
moved one spot to the right and the original A[1] ≥ key
Thus in this case the loop found the correct place k = 0.

Case 2: A[i ] ≤ key . Plugging in this value of i , we get
A[i + 2 . . j ] consists of elements originally in A[i + 1 . . j − 1]
but moved one spot to the right and the original
A[i + 1] ≥ key
So in both cases, the loop does what it was meant to do and
it is therefore correct.
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Correctness Proofs

Loop Invariants

Proving Correctness of LI1: Initialization

LI1: at the start of for loop iteration j , A[1 . . j − 1] consists of
elements originally in A[1 . . j − 1] but in sorted order
Before the first iteration, j = 2, LI1 trivially holds because
A[1 . . 1] is a sorted array
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Correctness Proofs

Loop Invariants

Proving Correctness of LI1: Maintenance

Since the inner loop is correct, we know it moves elements
finds the highest position k so that A[k] ≤ key and then moves
A[k . . j − 1] one position right without changing their order.

Then, in line 8 in the outer loop, the key element is inserted
into A[k + 1] so that A[k] ≤ A[k + 1] ≤ A[k + 2].

Since LI1 held before the current iteration, A[1 . . j − 1] was
sorted and A[j ] was inserted in the correct place, so A[1 . . j ]
consists of elements originally in A[1 . . j ] but in sorted order.
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Correctness Proofs

Loop Invariants

Proving Correctness of LI1: Termination and

Correctness

The loop terminates with j = A.length + 1

Plugging this value of j into LI1 we get
A[1 . .A.length] consists of elements originally in
A[1 . .A.length] but in sorted order

This is what the loop (program) was meant to do and it is
therefore proven correct.
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More on Correctness

More on Correctness of Algorithms: Exponentiation

Let us prove the correctness of the following algorithm for
computing the n-th power of a given real number.

power(y , z)

1 // return y z where y ∈ R , z ∈ N
2 x = 1
3 while z > 0
4 if odd(z)
5 x = x ∗ y
6 z = bz/2c
7 y = y 2

8 return x
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More on Correctness

Formulating the Loop Invariant

power(y , z)

1 x = 1
2 while z > 0
3 if odd(z)
4 x = x ∗ y
5 z = bz/2c
6 y = y 2

7 return x

How does the algorithm proceed?
The loop invariant for this code segment needs to capture the
entire state of the program, viz., variables x , y , z . Otherwise
proving the invariant may be difficult.



EECS 3101M W 19

More on Correctness

Formulating the Loop Invariant

power(y , z)

1 x = 1
2 while z > 0
3 if odd(z)
4 x = x ∗ y
5 z = bz/2c
6 y = y 2

7 return x

Since y , z are changed in the program, let y0, z0 denote the
initial values of y , z respectively. We want to express the fact
that in each iteration the loop stores in x , y0 raised to the
power “the last i − 1 digits of z0”. The part in quotes can be
compactly expressed as z0 mod 2i−1.
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More on Correctness

Formulating the Loop Invariant

Suppose the number of bits in z is n. Suppose also that
the initial values of x , y , z are x0, y0, z0 respectively. We
see that the while loop goes from i = 1 to n. After
studying the program the following loop invariant seems
reasonable:
LI: Before iteration i , z = b z0

2i−1 c, x = y z0 mod 2i−1

0 and

y = y 2i−1

0 .

We prove Initialization, correctness and termination
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More on Correctness

Proving Correctness: Initialization

Initialization: Before the first iteration, the invariant yields
z = b z0

20
c = z0, x = y z0 mod 20

0 = y 0
0 = 1 and y = y 20

0 = y0. All
these values match the code – x is initialized to 1 in line 1 and
y , z are unchanged.
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More on Correctness

Proving Correctness: Maintenance

Assume that the loop invariant holds at the beginning of
iteration i . We want to show that it holds at the beginning of
iteration i + 1. So before the current iteration, we have
z = b z0

2i−1 c, x = y z0 mod 2i−1

0 and y = y 2i−1

0 .
Lines 4 and 5 (potentially) change x . Notice that z0
mod 2i = 2i + z0 mod 2i−1 if the i th bit of z0 is a 1;
otherwise z0 mod 2i = z0 mod 2i−1. Notice also that the i th

bit of z0 is a 1 iff z = b z0
2i−1 c is odd. Therefore if the i th bit of

z0 is a 0 x is unchanged. This is what lines 4,5 do.
Otherwise,
x = x ∗ y = y z0 mod 2i−1

0 ∗ y 2i−1

0 = y 2i+z0 mod 2i−1

0 = y z0 mod 2i

0 ,
which is exactly the loop invariant for y at the beginning of
the next iteration.
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More on Correctness

Proving Correctness: Maintenance

Line 6 changes z to bz/2c = bb z0
2i−1 c/2c = b z0

2i
c, and line 7

changes y to (y 2i−1

0 )2 = y 2i

0 . Thus the maintenance proof is
complete.
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More on Correctness

Proving Correctness: Termination and Correctness

The loop terminates with i = n + 1.

Plugging this value of i into the invariant we get
x = y z0 mod 2n+1−1

0 = y z0
0 .

This is what the program was meant to do and it is therefore
proven correct.

Note that the final values of y , z are not really important,
since x is what the program returns.
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More on Correctness

More on Correctness of Algorithms: Selection Sort

I/O specs: same as insertion sort

Algorithm: Given an array A of n integers, sort them by
repetitively selecting the smallest among the yet unselected
integers.

Q: Is this precise enough?

Swap the smallest integer with the integer currently in the
place where the smallest integer should go.
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More on Correctness

Loop invariant

Algorithm: Given an array A of n integers, sort them by
repetitively selecting the smallest among the yet unselected
integers.

LI: at the beginning of the j th iteration,
the smallest j − 1 values are sorted in ascending order in
locations A[1 . . j − 1]

Q: Is this precise enough?

and the rest are in locations A[n − j . . n].
Exercise: prove the correctness of selection sort
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Correctness of Binary Search

More on Correctness of Algorithms: Binary Search

Precondition: A an array of sorted integers, key an integer
Postcondition: Index in which key is found, if it exists in the
array

Algorithmic idea:
1. Cut sublist in half
2. Determine which half the key would be in
3. Keep that half.

Note: LI must not assume that the element is present in the
list. So it should say something like
If the key is contained in the original list, then the key is
contained in the sublist
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Correctness of Binary Search

Pinning down the algorithm: Binary Search

If key ≤ A[mid ] then key is in the left half
Else key is in the right half

Maintain sublist from i to j

Which element is mid? Must be consistent

Subtle issue: Suppose we use
mid = b i+j

2
c

If key ≥ A[mid ] then i = mid
Else j = mid
A = 10 20 30 , key = 20
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