EECS 3101 A: Design and Analysis of Algorithms

Suprakash Datta
Office: LAS 3043

Course page: http://www.eecs.yorku.ca/course/3101A
Also on Moodle

GCD of 2 Natural Numbers m, n

- Precondition: $m, n \in \mathbb{N}$

Postcondition: returns $G C D(m, n)$

- Idea: if $(m>n), G C D(m, n)=G C D(m-n, n)$ Proof: k divides $m-n, n \Longleftrightarrow k$ divides m, n
- Can design iterative (or recursive) algorithm using this idea

Efficiency of GCD algorithm

$$
\begin{aligned}
G C D(999999999999,2) & =G C D(999999999997,2) \\
& =G C D(999999999995,2) \\
& =G C D(999999999993,2) \\
& =\ldots \\
& =G C D(1,2) \\
& =G C D(2,1) \\
& =G C D(1,1) \\
& =1
\end{aligned}
$$

Running time $=\Theta(m)$. Is this a linear time algorithm?

GCD (m, n) : Better Intuition

$$
\begin{aligned}
G C D(m, n) & =G C D(m-n, n) \\
& =G C D(m-2 n, n) \\
& =\cdots \\
& =G C D(m-i n, n) \text { such that } m-i n<n
\end{aligned}
$$

So $i=\left\lfloor\frac{m}{n}\right\rfloor, m-i n=m \bmod n$, and
$G C D(m, n)=G C D(m \bmod n, n)=G C D(n, m \bmod n)$

$\operatorname{GCD}(m, n)$: Euclid's Algorithm (c 300 BC)

$\operatorname{GCD}(m, n)$
$1 \quad x=m$
$2 \quad y=n$
3 while $y>0$
$\begin{array}{ll}4 & \text { xnew }\end{array}=y$
$6 \quad x=x n e w$
$7 \quad y=$ ynew
8 return x
Proof of correctness: Use LI $G C D(m, n)=G C D(x, y)$

Euclid's Algorithm: Running time

Try a few cases
Case 1:

$$
\begin{aligned}
G C D(999999999,2) & =G C D(1,2) \\
& =G C D(2,1) \\
& =G C D(1,1)=1
\end{aligned}
$$

Case 2:

$$
\begin{aligned}
G C D(999999999,999999991) & =G C D(8,99999999991) \\
=G C D(99999999991,8) & =G C D(7,8) \\
=G C D(8,7) & =G C D(1,7) \\
=G C D(7,1) & =1
\end{aligned}
$$

Euclid's Algorithm: Running time - contd.

- Key Insight: Every two iterations, the value x decreases by at least a factor of 2
i.e., the size of x decreases by at least one bit.
- Proof by cases.

Case 1: $n \leq\lfloor m / 2\rfloor$. Since $G C D(m, n)=G C D(n, m$ $\bmod n$), so $n \leq\lfloor m / 2\rfloor$ implies n has 1 fewer bit than m after 1 iteration
Case 2: $n>\lfloor m / 2\rfloor$. Again $G C D(m, n)=G C D(n, m$ $\bmod n)=G C D(m \bmod n, n \bmod (m \bmod n))$, and m $\bmod n=m-n<\lceil m / 2\rceil$.
Therefore the first argument has reduced by a factor of 2 and is thus 1 bit smaller after 2 iterations

- Running time: $O\left(\log _{2} m+\log _{2} n\right)=O(\log m)$

Multiplying Complex Numbers

(From Jeff Edmonds' slides)

- INPUT: Two pairs of integers, $(a, b),(c, d)$ representing complex numbers, $a+i b, c+i d$ respectively.
- OUTPUT: The pair $[(a c-b d),(a d+b c)]$ representing the product $(a c-b d)+i(a d+b c)$
- Naive approach: 4 multiplications, 2 additions.

Suppose a multiplication costs $\$ 1$ and an addition cost a penny. The naive algorithm costs $\$ 4.02$.

Q: Can you do better?

Multiplying Complex Numbers: Gauss' Idea

- $m_{1}=a c$
$m_{2}=b d$
$A_{1}=m_{1}-m_{2}=a c-b d$
$m_{3}=(a+b)(c+d)=a c+a d+b c+b d$
$A_{2}=m_{3}-m_{1}-m_{2}=a d+b c$
- Saves 1 multiplication! Uses more additions. The cost now is \$3.03.
This is good (saves 25\% multiplications), but it leads to more dramatic asymptotic improvement elsewhere! (aside: look for connections to known algorithms)
- Q: How fast can you multiply two n-bit numbers?

Multiplying $2 n$-bit Numbers

- Elementary school algorithm: $\Theta\left(n^{2}\right)$ time complexity
- Faster Algorithm: uses Divide-and-conquer strategy

Divide and Conquer

- DIVIDE: the problem into smaller instances to the same problem.
- CONQUER: (Recursively) solve them.
- COMBINE: Glue the answers together so as to obtain the answer to your larger instance. Sometimes the last step may be trivial.

Multiplying $2 n$-bit Numbers using Divide and Conquer

- $X=A|B|, Y=|C| D$
- $X=A 2^{n / 2}+B, Y=C 2^{n / 2}+D$,
A, B, C, D are $n / 2$ bit numbers
- Naive approach: $X Y=A C 2^{n}+(A D+B C) 2^{n / 2}+B D$ This gives $\Theta\left(n^{2}\right)$ time complexity - same as before

Faster Multiplication (Karatsuba 1962)

Uses Gauss' Idea

- $X=A 2^{n / 2}+B, Y=C 2^{n / 2}+D$,
A, B, C, D are $n / 2$ bit numbers
- $e=A C, f=B D$
- $X Y=e 2^{n}+((A+B)(C+D)-e-f) 2^{n / 2}+f$

This gives $\Theta\left(n^{\log _{2} 3}\right)$ time complexity

- asymptotically faster than before; $n^{1.58}$ vs n^{2}
- Fastest known: $O(n \log n)$: David Harvey and Joris van der Hoeven, March 2019

Matrix Multiplication

$\operatorname{MatMult}(A, B)$
1 // return $A B$ where A, B are $n \times n$ matrices
$2 n=$ A.rows
$3 C=\operatorname{CrEateMatrix}(n, n)$
4 for $i=1$ to n
$5 \quad$ for $j=1$ to n
$6 \quad C[i, j]=0$
7
for $k=1$ to n
8

$$
C[i, j]=C[i, j]+A[i, k] * B[k, j]
$$

9 return C
the running time is $\Theta\left(n^{3}\right)$

Towards Faster Matrix Multiplication

- Divide A, B into $4 n / 2 \times n / 2$ matrices
- $C_{11}=A_{11} B_{11}+A_{12} B_{21}$
$C_{12}=A_{11} B_{12}+A_{12} B_{22}$
$C_{21}=A_{21} B_{11}+A_{22} B_{21}$
$C_{22}=A_{21} B_{12}+A_{22} B_{22}$
- This gives $\Theta\left(n^{3}\right)$ time complexity - same as before
- Need a better idea

Faster Matrix Multiplication: Using Gauss' Idea

- $M_{1}=\left(A_{11}+A_{22}\right)\left(B 11+B_{22}\right.$

$$
M_{2}=\left(A_{21}+A_{22}\right) B_{11}
$$

$$
M_{3}=A_{11}\left(B_{12}-B_{22}\right)
$$

$$
M_{4}=A_{22}\left(B_{21}-B_{11}\right)
$$

$$
M_{5}=\left(A_{11}+A_{12}\right) B_{22}
$$

$$
M_{6}=\left(A_{21}-A_{11}\right)\left(B_{11}+B_{12}\right)
$$

$$
M_{7}=\left(A_{12}-A_{22}\right)\left(B_{21}+B_{22}\right)
$$

- We now express the $C_{i j}$ in terms of M_{k} :

$$
\begin{aligned}
& C_{11}=M_{1}+M_{4}-M_{5}+M_{7} \\
& C_{12}=M_{3}+M_{5} \\
& C_{21}=M_{2}+M_{4} \\
& C_{22}=M_{1}-M_{2}+M_{3}+M_{6}
\end{aligned}
$$

Faster Matrix Multiplication: Strassen's Algorithm

- only using 7 multiplications (one for each M_{k}) instead of 8
- This gives $\Theta\left(n^{\lg 7}\right)$ time complexity Proof needs the Master Theorem to analyze recurrences
- Divide and conquer approach provides unexpected improvements

Merge Sort

To sort n numbers

- if $n=1$ done!
- DIVIDE: Divide the array into 2 lists of sizes $\lceil n / 2\rceil$ and $\lfloor n / 2\rfloor$
- CONQUER: recursively sort the 2 lists
- COMBINE: merge 2 sorted lists in $\Theta(n)$ time

Merge Sort

$\operatorname{MergeSort}(A, p, r)$
1 if $p<r$
$2 \quad q=\left\lfloor\frac{p+r}{2}\right\rfloor$
3 MergeSort(A,p,q)
4 MergeSort(A,q+1,r)
5 Merge(A,p,q,r)
$\operatorname{Merge}(A, p, q, r)$
Take the smallest of the two topmost elements of sequences $A[p . . q]$ and $A[q+1 . . r]$ and put into the resulting sequence. Repeat this, until both sequences are empty. Copy the resulting sequence into $A[p . . r]$.

Merge Sort: Analysis

- Correctness: combine induction and loop invariants
- Run time: Can only express it recursively:
$T(1)=\Theta(1)$
$T(n)=2 T(n / 2)+\Theta(n)$

Finding the Maximum in an Array

- Divide into 2 (approximate) halves
- Find the maximum of each half
- Return the greater of these two values

Similar Problem: Finding the Maximum Subarray

Input: an array of integers
Output: find a contiguous subarray with the maximum sum

- Brute force: $\Theta\left(n^{3}\right)$ or $\Theta\left(n^{2}\right)$
- Can we do better using divide and conquer?
- Problem: The answer may not lie in either!
- Key question: What information do we need from the two halves to solve the big problem?
- Related question: how do we get this information?

Finding the Maximum Subarray

Ask 3 questions to each half:

- What is the maximum subarray for each half?
- What is the maximum "left-aligned subarray"?
- What is the maximum "right-aligned subarray"?

Questions:

- Is this enough? Proof of correctness?
- What is the running time of this algorithm?

