
EECS 3101A F 19

EECS 3101 A: Design and Analysis of

Algorithms

Suprakash Datta
Office: LAS 3043

Course page: http://www.eecs.yorku.ca/course/3101A
Also on Moodle

http://www.eecs.yorku.ca/course/3101A

EECS 3101A F 19

An Old Algorithm

GCD of 2 Natural Numbers m, n

Precondition: m, n ∈ N
Postcondition: returns GCD(m, n)

Idea: if (m > n), GCD(m, n) = GCD(m–n, n)
Proof: k divides m − n, n ⇐⇒ k divides m, n

Can design iterative (or recursive) algorithm using this
idea

EECS 3101A F 19

An Old Algorithm

Efficiency of GCD algorithm

GCD(999999999999, 2) = GCD(999999999997, 2)

= GCD(999999999995, 2)

= GCD(999999999993, 2)

= . . .

= GCD(1, 2)

= GCD(2, 1)

= GCD(1, 1)

= 1

Running time = Θ(m). Is this a linear time algorithm?

EECS 3101A F 19

An Old Algorithm

GCD(m, n): Better Intuition

GCD(m, n) = GCD(m − n, n)

= GCD(m − 2n, n)

= . . .

= GCD(m − in, n) such that m − in < n

So i = bm
n
c, m − in = m mod n, and

GCD(m, n) = GCD(m mod n, n) = GCD(n,m mod n)

EECS 3101A F 19

An Old Algorithm

GCD(m, n): Euclid’s Algorithm (c 300 BC)

GCD(m, n)

1 x = m
2 y = n
3 while y > 0
4 xnew = y
5 ynew = x mod y
6 x = xnew
7 y = ynew
8 return x

Proof of correctness: Use LI GCD(m, n) = GCD(x , y)

EECS 3101A F 19

An Old Algorithm

Euclid’s Algorithm: Running time

Try a few cases
Case 1:

GCD(999999999, 2) = GCD(1, 2)

= GCD(2, 1)

= GCD(1, 1) = 1

Case 2:

GCD(999999999, 999999991) = GCD(8, 999999999991)

= GCD(999999999991, 8) = GCD(7, 8)

= GCD(8, 7) = GCD(1, 7)

= GCD(7, 1) = 1

EECS 3101A F 19

An Old Algorithm

Euclid’s Algorithm: Running time - contd.

Key Insight: Every two iterations, the value x decreases
by at least a factor of 2
i.e., the size of x decreases by at least one bit.

Proof by cases.
Case 1: n ≤ bm/2c. Since GCD(m, n) = GCD(n,m
mod n), so n ≤ bm/2c implies n has 1 fewer bit than m
after 1 iteration
Case 2: n > bm/2c. Again GCD(m, n) = GCD(n,m
mod n) = GCD(m mod n, n mod (m mod n)), and m
mod n = m − n < dm/2e.
Therefore the first argument has reduced by a factor of 2
and is thus 1 bit smaller after 2 iterations

Running time: O(log2m + log2 n) = O(logm)

EECS 3101A F 19

A New Paradigm: Divide and Conquer

Multiplying Complex Numbers

(From Jeff Edmonds’ slides)

INPUT: Two pairs of integers, (a, b), (c , d) representing
complex numbers, a + ib, c + id respectively.

OUTPUT: The pair [(ac − bd), (ad + bc)] representing
the product (ac − bd) + i(ad + bc)

Naive approach: 4 multiplications, 2 additions.
Suppose a multiplication costs $1 and an addition cost a
penny. The naive algorithm costs $4.02.

Q: Can you do better?

EECS 3101A F 19

A New Paradigm: Divide and Conquer

Multiplying Complex Numbers: Gauss’ Idea

m1 = ac
m2 = bd
A1 = m1–m2 = ac − bd
m3 = (a + b)(c + d) = ac + ad + bc + bd
A2 = m3–m1–m2 = ad + bc

Saves 1 multiplication! Uses more additions. The cost
now is $3.03.
This is good (saves 25% multiplications), but it leads to
more dramatic asymptotic improvement elsewhere!
(aside: look for connections to known algorithms)

Q: How fast can you multiply two n-bit numbers?

EECS 3101A F 19

A New Paradigm: Divide and Conquer

Multiplying 2 n-bit Numbers

Elementary school algorithm: Θ(n2) time complexity

Faster Algorithm: uses Divide-and-conquer strategy

EECS 3101A F 19

A New Paradigm: Divide and Conquer

Divide and Conquer

DIVIDE: the problem into smaller instances to the same
problem.

CONQUER: (Recursively) solve them.

COMBINE: Glue the answers together so as to obtain the
answer to your larger instance. Sometimes the last step
may be trivial.

EECS 3101A F 19

A New Paradigm: Divide and Conquer

Multiplying 2 n-bit Numbers using Divide and

Conquer

X = A B , Y = C D

X = A2n/2 + B ,Y = C2n/2 + D,
A,B ,C ,D are n/2 bit numbers

Naive approach: XY = AC2n + (AD + BC)2n/2 + BD
This gives Θ(n2) time complexity – same as before

EECS 3101A F 19

A New Paradigm: Divide and Conquer

Faster Multiplication (Karatsuba 1962)

Uses Gauss’ Idea

X = A2n/2 + B ,Y = C2n/2 + D,
A,B ,C ,D are n/2 bit numbers

e = AC , f = BD

XY = e2n + ((A + B)(C + D)− e − f)2n/2 + f
This gives Θ(nlog2 3) time complexity
– asymptotically faster than before; n1.58 vs n2

Fastest known: O(n log n): David Harvey and Joris van
der Hoeven, March 2019

EECS 3101A F 19

A New Paradigm: Divide and Conquer

Matrix Multiplication

MatMult(A,B)

1 // return AB where A,B are n × n matrices
2 n = A.rows
3 C = CreateMatrix(n, n)
4 for i = 1 to n
5 for j = 1 to n
6 C [i , j] = 0
7 for k = 1 to n
8 C [i , j] = C [i , j] + A[i , k] ∗ B[k , j]
9 return C

the running time is Θ(n3)

EECS 3101A F 19

A New Paradigm: Divide and Conquer

Towards Faster Matrix Multiplication

Divide A,B into 4 n/2× n/2 matrices

C11 = A11B11 + A12B21

C12 = A11B12 + A12B22

C21 = A21B11 + A22B21

C22 = A21B12 + A22B22

This gives Θ(n3) time complexity – same as before

Need a better idea

EECS 3101A F 19

A New Paradigm: Divide and Conquer

Faster Matrix Multiplication: Using Gauss’ Idea

M1 = (A11 + A22)(B11 + B22

M2 = (A21 + A22)B11

M3 = A11(B12 − B22)
M4 = A22(B21 − B11)
M5 = (A11 + A12)B22

M6 = (A21 − A11)(B11 + B12)
M7 = (A12 − A22)(B21 + B22)

We now express the Cij in terms of Mk :
C11 = M1 + M4 −M5 + M7

C12 = M3 + M5

C21 = M2 + M4

C22 = M1 −M2 + M3 + M6

EECS 3101A F 19

A New Paradigm: Divide and Conquer

Faster Matrix Multiplication: Strassen’s Algorithm

only using 7 multiplications (one for each Mk) instead of 8

This gives Θ(nlg 7) time complexity
Proof needs the Master Theorem to analyze recurrences

Divide and conquer approach provides unexpected
improvements

EECS 3101A F 19

A Familiar Divide-and-Conquer Algorithm

Merge Sort

To sort n numbers

if n = 1 done!

DIVIDE: Divide the array into 2 lists of sizes dn/2e and
bn/2c

CONQUER: recursively sort the 2 lists

COMBINE: merge 2 sorted lists in Θ(n) time

EECS 3101A F 19

A Familiar Divide-and-Conquer Algorithm

Merge Sort

MergeSort(A, p, r)

1 if p < r
2 q = bp+r

2
c

3 MergeSort(A,p,q)
4 MergeSort(A,q+1,r)
5 Merge(A,p,q,r)

Merge(A, p, q, r)

Take the smallest of the two topmost elements of
sequences A[p..q] and A[q + 1..r] and put into the
resulting sequence. Repeat this, until both sequences
are empty. Copy the resulting sequence into A[p..r].

EECS 3101A F 19

A Familiar Divide-and-Conquer Algorithm

Merge Sort: Analysis

Correctness: combine induction and loop invariants

Run time: Can only express it recursively:
T (1) = Θ(1)
T (n) = 2T (n/2) + Θ(n)

EECS 3101A F 19

The Crux of Divide and Conquer

Finding the Maximum in an Array

Divide into 2 (approximate) halves

Find the maximum of each half

Return the greater of these two values

EECS 3101A F 19

The Crux of Divide and Conquer

Similar Problem: Finding the Maximum Subarray

Input: an array of integers
Output: find a contiguous subarray with the maximum sum

Brute force: Θ(n3) or Θ(n2)

Can we do better using divide and conquer?

Problem: The answer may not lie in either!

Key question: What information do we need from the two
halves to solve the big problem?

Related question: how do we get this information?

EECS 3101A F 19

The Crux of Divide and Conquer

Finding the Maximum Subarray

Ask 3 questions to each half:

What is the maximum subarray for each half?

What is the maximum “left-aligned subarray”?

What is the maximum “right-aligned subarray”?

Questions:

Is this enough? Proof of correctness?

What is the running time of this algorithm?

	An Old Algorithm
	A New Paradigm: Divide and Conquer
	A Familiar Divide-and-Conquer Algorithm
	The Crux of Divide and Conquer

