EECS 3101 A: Design and Analysis of Algorithms

Suprakash Datta

Office: LAS 3043

Course page: http://www.eecs.yorku.ca/course/3101A Also on Moodle

GCD of 2 Natural Numbers m, n

- Precondition: m, n ∈ N
 Postcondition: returns GCD(m, n)
- Idea: if (m > n), GCD(m, n) = GCD(m-n, n)Proof: k divides $m - n, n \iff k$ divides m, n
- Can design iterative (or recursive) algorithm using this idea

Efficiency of GCD algorithm

- GCD(99999999999, 2) =
- = GCD(99999999997, 2)
 - = GCD(99999999995,2)
 - = GCD(99999999993, 2)
 - = ...
 - = GCD(1, 2)
 - = GCD(2,1)
 - = GCD(1,1)

Running time = $\Theta(m)$. Is this a linear time algorithm?

GCD(m, n): Better Intuition

$$GCD(m, n) = GCD(m - n, n)$$

= GCD(m - 2n, n)
= ...
= GCD(m - in, n) such that m - in < n

So
$$i = \lfloor \frac{m}{n} \rfloor$$
, $m - in = m \mod n$, and
 $GCD(m, n) = GCD(m \mod n, n) = GCD(n, m \mod n)$

GCD(m, n): Euclid's Algorithm (c 300 BC)

```
GCD(m, n)
1 \quad x = m
2 \quad y = n
3 \quad while \quad y > 0
4 \qquad xnew = y
5 \qquad ynew = x \mod y
6 \qquad x = xnew
7 \qquad y = ynew
8 \quad return \quad x
```

Proof of correctness: Use LI GCD(m, n) = GCD(x, y)

Euclid's Algorithm: Running time

Try a few cases Case 1:

$$egin{array}{rcl} GCD(999999999,2) &=& GCD(1,2) \ &=& GCD(2,1) \ &=& GCD(1,1)=1 \end{array}$$

Case 2:

- GCD(999999999,99999991) = GCD(8,99999999999)
 - = GCD(999999999991, 8) = GCD(7, 8)

$$= GCD(8,7) = GCD(1,7)$$

$$= GCD(7,1) = 1$$

Euclid's Algorithm: Running time - contd.

- **Key Insight:** Every two iterations, the value *x* decreases by at least a factor of 2 i.e., the size of *x* decreases by at least one bit.
- Proof by cases.

<u>Case 1</u>: $n \leq \lfloor m/2 \rfloor$. Since $GCD(m, n) = GCD(n, m \mod n)$, so $n \leq \lfloor m/2 \rfloor$ implies n has 1 fewer bit than m after 1 iteration

<u>Case 2</u>: $n > \lfloor m/2 \rfloor$. Again $GCD(m, n) = GCD(n, m \mod n) = GCD(m \mod n, n \mod (m \mod n))$, and $m \mod n = m - n < \lceil m/2 \rceil$.

Therefore the first argument has reduced by a factor of 2 and is thus 1 bit smaller after 2 iterations

• Running time: $O(\log_2 m + \log_2 n) = O(\log m)$

Multiplying Complex Numbers

(From Jeff Edmonds' slides)

- INPUT: Two pairs of integers, (a, b), (c, d) representing complex numbers, a + ib, c + id respectively.
- OUTPUT: The pair [(ac bd), (ad + bc)] representing the product (ac - bd) + i(ad + bc)
- Naive approach: 4 multiplications, 2 additions.
 Suppose a multiplication costs \$1 and an addition cost a penny. The naive algorithm costs \$4.02.
- Q: Can you do better?

Multiplying Complex Numbers: Gauss' Idea

•
$$m_1 = ac$$

 $m_2 = bd$
 $A_1 = m_1 - m_2 = ac - bd$
 $m_3 = (a + b)(c + d) = ac + ad + bc + bd$
 $A_2 = m_3 - m_1 - m_2 = ad + bc$

- Saves 1 multiplication! Uses more additions. The cost now is \$3.03.
 This is good (saves 25% multiplications), but it leads to more dramatic asymptotic improvement elsewhere! (aside: look for connections to known algorithms)
- Q: How fast can you multiply two n-bit numbers?

A New Paradigm: Divide and Conquer

Multiplying 2 n-bit Numbers

• Elementary school algorithm: $\Theta(n^2)$ time complexity

• Faster Algorithm: uses Divide-and-conquer strategy

A New Paradigm: Divide and Conquer

Divide and Conquer

- DIVIDE: the problem into smaller instances to the same problem.
- CONQUER: (Recursively) solve them.
- COMBINE: Glue the answers together so as to obtain the answer to your larger instance. Sometimes the last step may be trivial.

Multiplying 2 *n*-bit Numbers using Divide and Conquer

•
$$X = [A | B], Y = [C | D]$$

•
$$X = A2^{n/2} + B$$
, $Y = C2^{n/2} + D$,
A, B, C, D are $n/2$ bit numbers

 Naive approach: XY = AC2ⁿ + (AD + BC)2^{n/2} + BD This gives Θ(n²) time complexity - same as before

Faster Multiplication (Karatsuba 1962)

Uses Gauss' Idea

 X = A2^{n/2} + B, Y = C2^{n/2} + D, A, B, C, D are n/2 bit numbers

•
$$e = AC, f = BD$$

- $XY = e2^n + ((A + B)(C + D) e f)2^{n/2} + f$ This gives $\Theta(n^{\log_2 3})$ time complexity – asymptotically faster than before; $n^{1.58}$ vs n^2
- Fastest known: $O(n \log n)$: David Harvey and Joris van der Hoeven, March 2019

Matrix Multiplication

```
MATMULT(A, B)
   // return AB where A, B are n \times n matrices
1
2 n = A rows
3
  C = CREATEMATRIX(n, n)
4
   for i = 1 to n
5
        for i = 1 to n
             C[i, j] = 0
6
7
             for k = 1 to n
                  C[i, j] = C[i, j] + A[i, k] * B[k, j]
8
9
   return C
```

the running time is $\Theta(n^3)$

Towards Faster Matrix Multiplication

• Divide A, B into $4 n/2 \times n/2$ matrices

•
$$C_{11} = A_{11}B_{11} + A_{12}B_{21}$$

 $C_{12} = A_{11}B_{12} + A_{12}B_{22}$
 $C_{21} = A_{21}B_{11} + A_{22}B_{21}$
 $C_{22} = A_{21}B_{12} + A_{22}B_{22}$

- This gives $\Theta(n^3)$ time complexity same as before
- Need a better idea

Faster Matrix Multiplication: Using Gauss' Idea

•
$$M_1 = (A_{11} + A_{22})(B_{11} + B_{22})$$

 $M_2 = (A_{21} + A_{22})B_{11}$
 $M_3 = A_{11}(B_{12} - B_{22})$
 $M_4 = A_{22}(B_{21} - B_{11})$
 $M_5 = (A_{11} + A_{12})B_{22}$
 $M_6 = (A_{21} - A_{11})(B_{11} + B_{12})$
 $M_7 = (A_{12} - A_{22})(B_{21} + B_{22})$

• We now express the C_{ij} in terms of M_k : $C_{11} = M_1 + M_4 - M_5 + M_7$ $C_{12} = M_3 + M_5$ $C_{21} = M_2 + M_4$ $C_{22} = M_1 - M_2 + M_3 + M_6$

Faster Matrix Multiplication: Strassen's Algorithm

• only using 7 multiplications (one for each M_k) instead of 8

This gives Θ(n^{lg 7}) time complexity
 Proof needs the Master Theorem to analyze recurrences

• Divide and conquer approach provides unexpected improvements

Merge Sort

To sort *n* numbers

- if n = 1 done!
- DIVIDE: Divide the array into 2 lists of sizes $\lceil n/2 \rceil$ and $\lfloor n/2 \rfloor$
- CONQUER: recursively sort the 2 lists
- COMBINE: merge 2 sorted lists in $\Theta(n)$ time

Merge Sort

MERGESORT(A, p, r)1 if p < r2 $q = \lfloor \frac{p+r}{2} \rfloor$ 3 MERGESORT(A,p,q)4 MERGESORT(A,q+1,r)5 MERGE(A,p,q,r)

Merge(A, p, q, r)

Take the smallest of the two topmost elements of sequences A[p..q] and A[q+1..r] and put into the resulting sequence. Repeat this, until both sequences are empty. Copy the resulting sequence into A[p..r].

A Familiar Divide-and-Conquer Algorithm

Merge Sort: Analysis

Correctness: combine induction and loop invariants

• Run time: Can only express it recursively: $T(1) = \Theta(1)$ $T(n) = 2T(n/2) + \Theta(n)$ └─ The Crux of Divide and Conquer

Finding the Maximum in an Array

• Divide into 2 (approximate) halves

• Find the maximum of each half

• Return the greater of these two values

Similar Problem: Finding the Maximum Subarray

Input: an array of integers Output: find a contiguous subarray with the maximum sum

- Brute force: $\Theta(n^3)$ or $\Theta(n^2)$
- Can we do better using divide and conquer?
- Problem: The answer may not lie in either!
- Key question: What information do we need from the two halves to solve the big problem?
- Related question: how do we get this information?

Finding the Maximum Subarray

Ask 3 questions to each half:

- What is the maximum subarray for each half?
- What is the maximum "left-aligned subarray"?
- What is the maximum "right-aligned subarray"? Questions:
 - Is this enough? Proof of correctness?
 - What is the running time of this algorithm?