
EECS 3101A F 19

EECS 3101 A: Design and Analysis of

Algorithms

Suprakash Datta
Office: LAS 3043

Course page: http://www.eecs.yorku.ca/course/3101A
Also on Moodle

http://www.eecs.yorku.ca/course/3101A


EECS 3101A F 19

Analysis of FindMax

Careful Running Time Analysis of Algorithms

Use the “RAM” model

Follows the example in the text on page 26

Precise counting of the computational cost (e.g. running
time) of each line of pseudocode



EECS 3101A F 19

Analysis of FindMax

Analysis of FindMax

Find-max(A)

1 max = A[1]
2 for j = 2 to A. length
3 if max < A[j ]
4 max = A[j ]
5 return max

line Cost Times
1 c1 1
2 c2 n
3 c3 n − 1
4 c4 0 ≤ k ≤ n − 1
5 c5 1

Best Case: k = 0
Worst Case: k = n − 1
Average Case: ?



EECS 3101A F 19

Analysis of FindMax

Best/Worst/Average Case Analysis



EECS 3101A F 19

Analysis of FindMax

Best/Worst/Average Case Analysis - 2

The running time of an algorithm typically grows with the
input size.

Best Case: Not very informative

Average Case: Often very useful, but hard to determine

Worst Case: Easier to analyze. Crucial in applications like

Games
Finance
Robotics



EECS 3101A F 19

Analysis of FindMax

Analysis of FindMax - Continued

Find-max(A)

1 max = A[1]
2 for j = 2 to A. length
3 if max < A[j ]
4 max = A[j ]
5 return max

line Cost Times
1 c1 1
2 c2 n
3 c3 n − 1
4 c4 0 ≤ k ≤ n − 1
5 c5 1

Running time (worst-case): c1 + c5 − c3 − c4 + (c2 + c3 + c4)n
Running time (best-case): c1 + c5 − c3 + (c2 + c3)n



EECS 3101A F 19

Analysis of FindMax

Simplifying Running Times

Note that the worst-case time of
c1 + c5 − c3 − c4 + (c2 + c3 + c4)n is

Complex

Not useful as the ci ’s are machine dependent

A simpler expression: C + Dn [still complex].

Want to say this is Linear, i.e., ≈ n

Q: How/why can we throw away the coefficient D and the
lower order term C?



EECS 3101A F 19

Analysis of FindMax

Simplifying Running Times - Rationale

Discarding lower order terms: We are interested in large n
– cleaner theory, usually realistic.

Discarding coefficients (multiplicative constants): the
coefficients are machine dependent

Caveat: remember these assumptions when interpreting
results! We will not get:

Exact run times

Comparison for small instances

Small differences in performance



EECS 3101A F 19

Analysis of FindMax

Analysis of FindMax - Summary

Last expression: C + Dn written as Θ(n)

Also called linear time

Question: Can we do better?

Later:
Lower Bounds: We will show that for any algorithm for this
problem, for each n > 0, there exists an input that make the
algorithm take Ω(n) time



EECS 3101A F 19

Analysis of FindMax

Another problem

The i th prefix average of an array X is the average of the first
i + 1 elements of X :

A[i ] = (X [0] + X [1] + . . . + X [i ])/(i + 1)

We will look at 2 implementations.



EECS 3101A F 19

Analysis of FindMax

A Slower Algorithm

Good example for determining the running time



EECS 3101A F 19

Analysis of FindMax

Analysis

Outer loop iterates for j = 0, . . . , n − 1

Inner loop iterates for i = 0, . . . , j

The loop body takes Θ(1) steps



EECS 3101A F 19

Analysis of FindMax

Analysis - 2

The easiest way to sum the running time is

T (n) =
n−1∑
j=0

j∑
i=0

1

=
n−1∑
j=0

(j + 1)

=
n∑

j=1

j

= n(n + 1)/2

So T (n) ∈ Θ(n2)



EECS 3101A F 19

Analysis of FindMax

A Faster Algorithm

Analysis: Linear time Θ(n)



EECS 3101A F 19

Analysis of FindMax

More practice

PoA:

280

283

264


	Analysis of FindMax

