EECS 3101A F 19

EECS 3101 A: Design and Analysis of
Algorithms

Suprakash Datta
Office: LAS 3043

Course page: http://www.eecs.yorku.ca/course/3101A
Also on Moodle

http://www.eecs.yorku.ca/course/3101A

EECS 3101A F 19

Careful Running Time Analysis of Algorithms
@ Use the "RAM" model
@ Follows the example in the text on page 26

@ Precise counting of the computational cost (e.g. running
time) of each line of pseudocode

EECS 3101A F 19

Analysis of FindMax

Analysis of FINDMAX

FIND-MAX(A) line | Cost Times

1 max = All] 1 | a 1

2 for j = 2 to A.length 2 | @ n

3 if max < A[j] 3 | n—1

4 max = A[j] 4 g |[0<k<n-1
5 return max 5 Cs 1

Best Case: k=0
Worst Case: k=n—1
Average Case: 7

EECS 3101A F 19

Analysis of FindMax

Best/Worst /Average Case Analysis

O best case
W average case
W worst case

120+

100 -

80

60 -

40 ¢

Running Time

1000 2000 3000 4000
Input Size

EECS 3101A F 19

Analysis of FindMax

Best/Worst/Average Case Analysis - 2

The running time of an algorithm typically grows with the
input size.

@ Best Case: Not very informative
@ Average Case: Often very useful, but hard to determine
@ Worst Case: Easier to analyze. Crucial in applications like

e Games
e Finance
e Robotics

EECS 3101A F 19

Analysis of FindMax

Analysis of FINDMAX - Continued

FIND-MAX(A) line | Cost Times

1 max = A[1] 1 2! 1

2 for j = 2 to A.length 2 €2 n

3 if max < A[j] 3| o n—1

4 max = A[j] 4 a |0<k<n-1
5 return max 5 | & 1

Running time (worst-case): ¢; + ¢ —c; —a+ (2 + 3+ c)n
Running time (best-case): ¢; + ¢ — 3 + (6 + &3)n

EECS 3101A F 19

Analysis of FindMax

Simplifying Running Times

Note that the worst-case time of
at+tas—ag—ag+(a+ca+a)nis

e Complex

@ Not useful as the ¢;'s are machine dependent

A simpler expression: C + Dn [still complex].
Want to say this is Linear, i.e., = n

Q: How/why can we throw away the coefficient D and the
lower order term C7

EECS 3101A F 19
Simplifying Running Times - Rationale

@ Discarding lower order terms: We are interested in large n
— cleaner theory, usually realistic.

e Discarding coefficients (multiplicative constants): the
coefficients are machine dependent

Caveat: remember these assumptions when interpreting
results! We will not get:

@ Exact run times
@ Comparison for small instances

@ Small differences in performance

EECS 3101A F 19

Analysis of FindMax

Analysis of FINDMAX - Summary

@ Last expression: C + Dn written as ©(n)
@ Also called linear time

@ Question: Can we do better?

Later:

Lower Bounds: We will show that for any algorithm for this
problem, for each n > 0, there exists an input that make the
algorithm take Q(n) time

EECS 3101A F 19

Analysis of FindMax

Another problem

The i*" prefix average of an array X is the average of the first
i + 1 elements of X:

Alil = (X[0] + X[1] + ... + X[i)/(i + 1)

We will look at 2 implementations.

EECS 3101A F 19

Analysis of FindMax

A Slower Algorithm

1 /#x Returns an array a such that, for all j, a[j] equals the average of x[0], ..., x[j]. *
2 public static double[| prefixAveragel(double[] x) {

3 int n = x.length;

4 double[| a = new double[n]; // filled with zeros by default

5 for (int j=0; j < n; j++) {

6 double total = 0; // begin computing x[0] + ... + X|
7 for (int i=0; i <= j; i++)

8 total += x]i];

9 a[j] = total / (j+1); // record the average
10
11 return 3;
12}

Good example for determining the running time

EECS 3101A F 19

Analysis of FindMax

Analysis
@ Outer loop iterates for j =0,...,n—1
@ Inner loop iterates for i =0,...,J

@ The loop body takes ©(1) steps

EECS 3101A F 19

Analysis of FindMax

Analysis - 2
The easiest way to sum the running time is
n—1 J
T(n) = > 2.1
j=0 i=0

= G+

— Zj
= :1En—|—1)/2

So T(n) € ©(n?)

EECS 3101A F 19

Analysis of FindMax

A Faster Algorithm

/*% Returns an array a such that, for all j, a[j] equals the average of x[0], ..., x[j]. *
public static double][| prefixAverage2(double[| x) {

1

2

3 int n = x.length;

4 double[| a = new double[n];
5 double total = 0;

6 for (int j=0; j < n; j++) {
7 total += x][j];

8 a[j] = total / (j+1);
9

10 return a;

11}

Analysis: Linear time ©(n)

// filled with zeros by default
// compute prefix sum as x[0] + x[1] + .

// update prefix sum to include x[j]
// compute average based on current sur

EECS 3101A F 19

Analysis of FindMax

More practice

PoA:
e 230

@ 283

e 264

	Analysis of FindMax

