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Analysis of FindMax

Careful Running Time Analysis of Algorithms

Use the “RAM” model

Follows the example in the text on page 26

Precise counting of the computational cost (e.g. running
time) of each line of pseudocode
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Analysis of FindMax

Find-max(A)

1 max = A[1]
2 for j = 2 to A. length
3 if max < A[j ]
4 max = A[j ]
5 return max

line Cost Times
1 c1 1
2 c2 n
3 c3 n − 1
4 c4 0 ≤ k ≤ n − 1
5 c5 1

Best Case: k = 0
Worst Case: k = n − 1
Average Case: ?
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Best/Worst/Average Case Analysis
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Best/Worst/Average Case Analysis - 2

The running time of an algorithm typically grows with the
input size.

Best Case: Not very informative

Average Case: Often very useful, but hard to determine

Worst Case: Easier to analyze. Crucial in applications like

Games
Finance
Robotics
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Analysis of FindMax - Continued

Find-max(A)

1 max = A[1]
2 for j = 2 to A. length
3 if max < A[j ]
4 max = A[j ]
5 return max

line Cost Times
1 c1 1
2 c2 n
3 c3 n − 1
4 c4 0 ≤ k ≤ n − 1
5 c5 1

Running time (worst-case): c1 + c5 − c3 − c4 + (c2 + c3 + c4)n
Running time (best-case): c1 + c5 − c3 + (c2 + c3)n
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Simplifying Running Times

Note that the worst-case time of
c1 + c5 − c3 − c4 + (c2 + c3 + c4)n is

Complex

Not useful as the ci ’s are machine dependent

A simpler expression: C + Dn [still complex].

Want to say this is Linear, i.e., ≈ n

Q: How/why can we throw away the coefficient D and the
lower order term C?
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Simplifying Running Times - Rationale

Discarding lower order terms: We are interested in large n
– cleaner theory, usually realistic.

Discarding coefficients (multiplicative constants): the
coefficients are machine dependent

Caveat: remember these assumptions when interpreting
results! We will not get:

Exact run times

Comparison for small instances

Small differences in performance
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Analysis of FindMax - Summary

Last expression: C + Dn written as Θ(n)

Also called linear time

Question: Can we do better?

Later:
Lower Bounds: We will show that for any algorithm for this
problem, for each n > 0, there exists an input that make the
algorithm take Ω(n) time
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Another problem

The i th prefix average of an array X is the average of the first
i + 1 elements of X :

A[i ] = (X [0] + X [1] + . . . + X [i ])/(i + 1)

We will look at 2 implementations.
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A Slower Algorithm

Good example for determining the running time
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Analysis

Outer loop iterates for j = 0, . . . , n − 1

Inner loop iterates for i = 0, . . . , j

The loop body takes Θ(1) steps
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Analysis - 2

The easiest way to sum the running time is

T (n) =
n−1∑
j=0

j∑
i=0

1

=
n−1∑
j=0

(j + 1)

=
n∑

j=1

j

= n(n + 1)/2

So T (n) ∈ Θ(n2)
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A Faster Algorithm

Analysis: Linear time Θ(n)
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More practice

PoA:

280

283

264
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