
WRITTEN TEST 1E

This is a 45 minute test. The test is closed book (no aids are allowed).

Written question instructions

• There are 8 short answer questions, each worth 2 marks.
• There are 3 questions that require students to explain their answers, each

worth 6 marks.
• Answer the written questions in a text file named answers.txt—a suitable file

should open in a text editor when the test starts. Feel free to use a different
text editor if you wish.

• Make sure to save your work before submitting it! Every year a small number
of students end up submitting an empty file because they forgot to save their
work.

• You may submit your work as many times as you wish.
• A few minutes before the end of the test you will receive a warning that the

test is ending soon. The message will repeat every minute until the end of the
test. Use this time to submit your work; it is difficult to work effectively with
the message popping up every minute.

Submission instructions

• Open a terminal (if one is not already open)
• Find the directory where you have saved your answers.txt file; the file should

be in your home directory.
• Type the following command:

submit 2030 test1E answers.txt

and press enter.



1. [2 marks] Consider the following memory diagram:

variable name address value

s 36 100a

t 38 120a

u 40 120a

v 42 120a

100 Point2 object

x 102 3.0

y 104 5.0

120 Point2 object

x 122 -2.0

y 124 -4.0

Complete the 4 incomplete lines of Java code below that would produce the given memory
diagram:

Point2 s = new Point2(-2.0, -4.0); // this line is already complete

Point2 t = new Point2(3.0, 5.0); // this line is already complete

Point2 u =

Point2 v =

s =

t =

Solution:

Point2 s = new Point2(-2.0, -4.0); // this line is already complete

Point2 t = new Point2(3.0, 5.0); // this line is already complete

Point2 u = s;

Page 2



Point2 v = u; // or v = s;

s = t;

t = u; // or t = v;

2. [2 marks] What is the difference betweeen an object and a reference?

Solution: A reference is the memory address of an object.

3. [2 marks] What is the definition of the term type (in the context of the type of a variable)?

Solution: A type represents a set of values and the operations that can be performed using
those values.

4. [2 marks] What is the purpose of the no-argument constructor?

Solution: To initialize the state of an object to some default state.

5. [2 marks] Consider the following class that has the class invariant this.ohms >= 0:

public class Resistor {

// the resistance of this resistor

double ohms;

public void setResistance(double ohms) {

this.ohms = ohms;

if (ohms < 0) {

throw new IllegalArgumentException();

}

}

}

What is wrong with the implementation of setOhms?

Solution: The class invariant is not true after the method finishes running. Also accept-
able: The method should perform the validation before assigning the field a value.

Page 3



6. [2 marks] Consider the following class:

public class Point2 {

private double x;

private double y;

public Point2(double x, double y) {

// implementation not shown

}

public Point2(Point2 other) {

// implementation not shown

}

}

What type of constructor is the second constructor?

Solution: copy constructor

7. [2 marks] In this course, we have four requirements for implementing an equals method in a
class. In the equals method below, which requirement does the if statement satisfy?

@Override

public boolean equals(Object obj) {

if (this == obj) {

// not shown

}

// rest of method not shown

}

Solution: An object is equal to itself

8. [2 marks] When must you override the hashCode method?

Solution: When equals has been overridden.

Page 4



9. [6 marks] York University uses a letter grade to represent a course grade but many professors
compute the grade using a percentage value (i.e., a floating-point value between 0.0 and 100.0).
The percentage grade must be converted to a letter grade but there is no standard way of doing
so. For simplicity, assume that there are only five letter grades: A, B, C, D, F. One professor
might use the following conversion of percent grades to letter grades:

percent grade letter grade

90 to 100 A
75 to 90 B
60 to 75 C
50 to 60 D

less than 50 F

Another professor might use the following conversion of percent grades to letter grades:

percent grade letter grade

80 to 100 A
65 to 80 B
55 to 65 C
40 to 55 D

less than 40 F

For the purposes of this question, it is unimportant to what happens to a numeric grade exactly
on the boundary of two letter grades.

Suppose that you had to write a class that lets a professor create an object to map percent
grades to letter grades. The constructor allows the user to specify what range of percentage
grades map to which letter grade. The class also has a method that maps a specifed percentage
grade to a letter grade.

What primitive type fields would you use to implement the class? In your answer, explain how
many fields you would use, their types, what the fields represent, and what invariants (if any)
each field has.

Solution: The question says that the percent grades are floating-point values so either
float or double fields are probably required. Four fields are required one each for the
boundary between grades:

name number type represents invariants

ab 1 double boundary between A
and B

must be between 0.0 and
100.0

bc 1 double boundary between B
and C

must be between 0.0 and
ab

cd 1 double boundary between C
and D

must be between 0.0 and
bc

df 1 double boundary between D
and F

must be between 0.0 and
cd

This particular solution allows one or more letter grades to have a percent range of 0.0
which is acceptable for this question.

Page 5



10. [6 marks] A RangedValue object represents an integer value that is guaranteed to be within a
range of values. For example, the statement

RangedValue v = new RangedValue(0, -3, 5);

makes a RangedValue object having a value of 0 and lying in the range of -3 to 5.

The methods min and max return the minimum and maximum values of a range:

RangedValue v = new RangedValue(0, -3, 5);

int lo = v.min(); // lo is -3

int hi = v.max(); // hi is 5

The method value returns the value:

RangedValue v = new RangedValue(0, -3, 5);

int val = v.value(); // val is 0

The method fraction returns the value expressed as a percentage (a value between 0.0 and
1.0) of the width of the range:

RangedValue v = new RangedValue(0, -3, 5);

double f = v.fraction(); // f is 0.375

[questions on next page]

Page 6



(a) [2 marks] What class invariants should RangedValue have?

Solution: Two invariants are require:

1. the minimum value must be less than or equal to the maximum value of the
range

2. the value must be between the minimum and maximum values of the range

(b) [2 marks] Suppose that fraction is implemented like so:

public double fraction() {

double f = (this.value() - this.min()) / (this.max() - this.min());

return f;

}

Is there anything wrong with the implementation of fraction? If so, suggest a way to
correct the error.

Solution: The error is that f is computed using integer arithmetic which means
that the quotient will always be an integer value and one or both differences might
overflow. The solution is to make sure both differences are computed using floating-
point arithmetic; for example:

double f = (0.0 + this.value() - this.min()) / (0.0 + this.max() - this.min());

(c) [2 marks] Suppose that RangedValue implements the Comparable interface and that ranged
values are compared using the fraction method:

@Override

public int compareTo(RangedValue other) {

return Integer.compare(this.fraction(), other.fraction());

}

Suppose that equals is defined using the rule that two ranged values are equal if and only
if their values are equal. Is compareTo consistent with equals? Explain your answer by
using the conditions required for compareTo to be consistent with equals.

Solution: No. Consider the following two ranged values:

RangedValue x = new RangedValue(5, 0, 10);

RangedValue y = new RangedValue(50, 0, 100);

Both ranged values have a fractional value of 0.5; therefore, x.compareTo(y) returns
0. The ranged values are not equal because their values differ; therefore, x.equals(y)
returns false. Because compareTo returns 0 when equals returns false we can
conclude that compareTo is not consistent with equals.

Page 7



11. (a) [1 mark] The Nickel class has an equals method that has documentation that says “a
nickel is equal to all other nickels”. A student implements the equals method in the
Nickel class as follows:

@Override

public boolean equals(Object obj) {

if (obj == null) {

return false;

}

if (this.getClass() != obj.getClass()) {

return false;

}

return true;

}

State what errors, if any, are in the implementation. In your answer, try to refer to the
four requirements we have for the equals method in this course.

Solution: There are no errors.

(b) [2 marks] The getClass method used in equals returns a reference to a Class object.
You should be aware that we normally use equals to compare two references for equality;
however, the if statement:

if (this.getClass() != obj.getClass())

is guaranteed to work correctly. What can you conclude about the reference returned by
getClass?

Solution: getClass always returns a reference to the same object for each class. In
other words, for each class there is exactly one Class object and getClass returns a
reference to this object.

(c) [3 marks] The Nickel class has a hashCode method that has documentation that says
the method “returns the issue year of the nickel”. A student implements the hashCode
method in the Nickel class as follows:

@Override

public int hashCode() {

return this.year;

}

The implementation correctly does what the documentation says it should, but hashCode
should not be implemented this way for Nickel. Give a correct (one line) implementation
of hashCode for Nickel.

Solution: The requirement for hashCode is that it must return the same hash code
for two equal objects. Because all nickels are equal, hashCode must return a constant
value:

Page 8



@Override

public int hashCode() {

return 1;

}

Page 9


