
WRITTEN TEST 1D

This is a 45 minute test. The test is closed book (no aids are allowed).

Written question instructions

• There are 8 short answer questions, each worth 2 marks.
• There are 4 questions that require students to explain their answers, each

worth 6 marks.
• Answer the written questions in a text file named answers.txt—a suitable file

should open in a text editor when the test starts. Feel free to use a different
text editor if you wish.

• Make sure to save your work before submitting it! Every year a small number
of students end up submitting an empty file because they forgot to save their
work.

• You may submit your work as many times as you wish.
• A few minutes before the end of the test you will receive a warning that the

test is ending soon. The message will repeat every minute until the end of the
test. Use this time to submit your work; it is difficult to work effectively with
the message popping up every minute.

Submission instructions

• Open a terminal (if one is not already open)
• Find the directory where you have saved your answers.txt file; the file should

be in your home directory.
• Type the following command:

submit 2030 test1D answers.txt

and press enter.



1. [2 marks] Consider the following memory diagram:

variable name address value

s 36 100a

t 38 120a

u 40 120a

v 42 120a

100 Point2 object

x 102 3.0

y 104 5.0

120 Point2 object

x 122 -2.0

y 124 -4.0

Complete the 4 incomplete lines of Java code below that would produce the given memory
diagram:

Point2 s = new Point2(-2.0, -4.0); // this line is already complete

Point2 t = new Point2(3.0, 5.0); // this line is already complete

Point2 u =

Point2 v =

s =

t =

Solution:

Point2 s = new Point2(-2.0, -4.0); // this line is already complete

Point2 t = new Point2(3.0, 5.0); // this line is already complete

Point2 u = s;

Page 2



Point2 v = s; // or v = u;

s = t;

t = u; // or t = v;

2. [2 marks] What is the definition of the term state of an object?

Solution: The set of values of the fields of the object.

3. [2 marks] In an expression such as

double z = x * y;

how does the Java compiler determine if it should use integer multiplication or floating-point
multiplication?

Solution: By looking at the types of x and y.

4. [2 marks] When making a new object (that is not an array) in Java you use the new operator.
What comes immediately after the new operator?

Solution: A constructor call.

5. [2 marks] What is the definition of the term class invariant?

Solution: A condition that must be true immediately after every constructor and public
method finishes.

Page 3



6. [2 marks] Consider the following class:

public class Point2 {

private double x;

private double y;

public Point2(double x, double y) {

// implementation not shown

}

public Point2(Point other) {

// implementation not shown

}

}

What type of constructor is the second constructor?

Solution: copy constructor

7. [2 marks] The equals contract states that equals must be symmetric; what does symmetry
mean for the equals method?

Solution: x.equals(y) must return the same value as y.equals(x)

8. [2 marks] How should you decide if a class that you are implementing should implement the
Comparable interface?

Solution: You should implement the Comparable interface when it makes sense to say one
object is smaller than, greater than, or equal to another object.

Page 4



9. (a) [2 marks] In lecture halls at York University, the presenter can mute (turn off) and activate
(turn on) the microphone. The muting and activating (and all the other audio-visual
controls) is controlled via a small computer which means that someone wrote some software
to control the microphone. Suppose that you had to write a class that represents whether
the microphone is muted or active. In particular, the class needs methods that mutes the
microphone and activates the microphone.

What primitive type fields would you use to implement the class? In your answer, explain
how many fields you would use, their types, what the fields represent, and what invariants
(if any) each field has.

Solution: The simplest solution is to use one boolean field to represent the state of
the microphone, but any primitive could be used. Two possible solutions are given
below:
number type represents invariants

1 boolean on (true) or off (false) no invariants

1 int on (1) or off (0) must be equal to 0 or 1

(b) [4 marks] In lecture halls at York University, the presenter can set the microphone volume
to one of twelve different volume levels (from silent to full volume). Suppose that you had
to write a class that represents the volume level. In particular, the class needs methods
that set the volume level to one of the twelve possible levels.

What primitive type fields would you use to implement the class? In your answer, explain
how many fields you would use, their types, what the fields represent, and what invariants
(if any) each field has.

Solution: One int field makes the most sense here, but any primitive type could be
made to work. One possible solution is given below:

number type represents invariants

1 int off (0), from quietest to
full volume (1–11)

must be in the range 0–11

Page 5



10. [6 marks] A Range object represents a range of integer values. For example, the statement

Range r = new Range(-3, 5);

makes a Range object having a minimum value of -3 and a maximum value of 5; i.e., the object
represents the range of int values -3, -2, -1, 0, 1, 2, 3, 4, 5. The class invariant for
Range is that the minimum value of the range is less than or equal to the maximum value of
the range.

The methods min and max return the minimum and maximum values of a range:

Range r = new Range(-3, 5);

int lo = r.min(); // lo is -3

int hi = r.max(); // hi is 5

Suppose that you define a compareTo method for ranges using the following three rules:

1. x.compareTo(y) returns a negative integer if x.min() is less than y.min()
2. x.compareTo(y) returns a positive integer if x.max() is greater than y.max()
3. x.compareTo(y) returns zero if neither rule 1 nor rule 2 applies

When implementing compareTo the three rules shown above are applied in the order that they
appear (i.e., first apply rule 1, then apply rule 2 if necessary, then apply rule 3 if necessary).

(a) [4 marks] Suppose that equals returns true if and only if two ranges have the same
minimum and maximum values. Is compareTo consistent with equals?

Solution: No. Consider the two ranges x = new Range(2, 3) and y = new Range(0,
5). Rules 1 and 2 do not apply; therefore, x.compareTo(y) returns 0 but x.equals(y)
returns false.

(b) [2 marks] There is something wrong with defining compareTo for Range using the three
rules above. Describe an example where the Range version of compareTo leads to a non-
sensical result.

Solution: The rules do not define a total ordering of ranges. Consider the two ranges:

Range x = new Range(5, 6);

Range y = new Range(0, 10);

Then

x.compareTo(y) returns 0 (x “is equal to” y), but
y.compareTo(x) returns -1 (y “is less than” x)

Page 6



11. The game rock-paper-scissors is a game played between two people. Both players form a shape
with their hand at the same time; the hand shapes are:

• a closed fist or rock
• a flat hand or paper
• a two finger V or scissors

The winner is determined by applying the following rules:

• rock beats scissors
• scissors beats paper
• paper beats rock
• if both hands are the same then the result is a draw (neither player wins)

Suppose that you have the following class that represents the hand shapes for the game rock-
paper-scissors:

public class Hand implements Comparable<Hand> {

private String shape;

// precondition: shape is one of "rock", "paper", or "scissors"

public Hand(String shape) {

this.shape = shape;

}

public String getShape() {

return new String(this.shape);

}

@Override

public boolean equals(Object obj) {

if (this == obj) {

return true;

}

if (obj == null) {

return false;

}

if (this.getClass() != obj.getClass()) {

return false;

}

Hand other = (Hand) obj;

if (this.getShape() == other.getShape()) {

return true;

}

return false;

}

// compareTo and hashCode not shown

}

Page 7



(a) [3 marks] In this course, we have four requirements for every equals method. The first
three if statements in the equals method shown above ensure that three of the four
requirements are satisfied. For each of the first three if statements in the method, use one
sentence to indicate what requirement is satisfied.

Solution:

• the first if statement ensures that an object is equal to itself
• the second if statement ensures that an object is never equal to null
• the third if statement ensures that only objects of the same type can be equal

(b) [1 mark] There is one error in the given implementation of equals. What is the error and
how should it be fixed? [There are technically no errors elsewhere in the class.]

Solution: this.getShape() == other.getShape() is never true because getShape
always returns a reference to a new string. The solution is to use equals instead of
== to compare the two strings.

(c) [2 marks] The class says that it implements the Comparable interface. Should compareTo
be implemented using the rules that determine which hand wins a round of rock-paper-
scissors? Use one to three sentences to explain your answer.

Solution: No. There is no total ordering of hand shapes (every shape is “less than”
some other shape and “greater than” some other shape).

Page 8


