
WRITTEN TEST 1B

This is a 45 minute test. The test is closed book (no aids are allowed).

Written question instructions

• There are 8 short answer questions, each worth 2 marks.
• There are 4 questions that require students to explain their answers, each

worth 6 marks.
• Answer the written questions in a text file named answers.txt—a suitable file

should open in a text editor when the test starts. Feel free to use a different
text editor if you wish.

• Make sure to save your work before submitting it! Every year a small number
of students end up submitting an empty file because they forgot to save their
work.

• You may submit your work as many times as you wish.
• A few minutes before the end of the test you will receive a warning that the

test is ending soon. The message will repeat every minute until the end of the
test. Use this time to submit your work; it is difficult to work effectively with
the message popping up every minute.

Submission instructions

• Open a terminal (if one is not already open)
• Find the directory where you have saved your answers.txt file; the file should

be in your home directory.
• Type the following command:

submit 2030 test1B answers.txt

and press enter.

1. [2 marks] Consider the following memory diagram:

variable name address value

x 100 -1.0

y 102 5.0

s 104 250a

t 106 270a

250 Point2 object

x 255 -1.0

y 257 5.0

270 Point2 object

x 275 0.0

y 277 0.0

Complete the 4 lines of Java code below that would produce the given memory diagram:

double x =

double y =

Point2 s =

Point2 t =

Solution:

double x = -1.0;

double y = 5.0;

Point2 s = new Point2(x, y); // or new Point2(-1.0, 5.0);

Point2 t = new Point2(); // or new Point2(0.0, 0.0);

Page 2

2. [2 marks] What is the definition of the term state of an object?

Solution: The values of the fields of the object.

3. [2 marks] In an expression such as

double z = x * y;

how does the Java compiler determine if it should use integer multiplication or floating-point
multiplication?

Solution: By looking at the types of x and y.

4. [2 marks] Why do we use constructor chaining?

Solution: To reduce code duplication.

5. [2 marks] A constructor that has a precondition involving one or more of its parameters usually
validates the input arguments to ensure that the precondition is true. Why is it important for
the constructor to validate the input arguments if the constructor has a precondition?

Solution: To avoid initializing the object to an invalid state. Also acceptable: To ensure
that the class invariants are true.

6. [2 marks] When does shadowing occur in a method?

Solution: When the method has a parameter that has the same name as a field.

Page 3

7. [2 marks] The equals contract states that equals must be transitive; what does transitivity
mean for the equals method?

Solution: if x.equals(y) and y.equals(z) then x.equals(z)

8. [2 marks] A student attempting to implement the compareTo method for the Die class in Lab 2
writes the following in their class:

@Override

public int compareTo(Die other) {

if (this.value < other.value) {

return -1; // this Die is smaller than the other Die

}

else if (this.value > other.value) {

return 1; // this Die is greater than the other Die

}

else if (this.value == other.value) {

return 0; // this Die is equal to the other Die

}

}

Their eclipse editor indicates that there is a compilation error in their method. What is wrong
with what the student has written?

Solution: The method does not return a value if none of the conditional statements in the
if statements are true. Also acceptable: The last else if statement should simply be an
else statement (or the else if statement can be entirely removed and the method can
simply return 0).

Page 4

9. [6 marks] A PIN for a bank card is a sequence of 4 to 8 digits where any digit is allowed to be
a zero (for example, 0009 is a valid 4-digit PIN and 01020304 is a valid 8-digit PIN). Suppose
that you would like to implement a class that represents a PIN.

Because PINs are used to authenticate a user, it is important that your class has the following
method:

• matches(PIN other) : returns true if this PIN and the other PIN have the same sequeunce
of digits

What primitive type fields would you use to implement the class? In your answer, explain how
many fields you would use, their types, what the fields represent, and what invariants (if any)
each field has.

Solution: At least two primitive type fields are required if the PIN is allowed to have
leading zeros. Two possible solutions are given below:

name number type represents invariants

nZeros 1 int number of leading ze-
ros

value must be between 0
and 7

digits 1 int digits of the PIN not
including the leading
zeros

length(digits) + nZeros

must be between 4 and 8

nDigits 1 int total number of digits
in the PIN (including
leading zeros)

value must be between 4
and 8

digits 1 int digits of the PIN not
including the leading
zeros

length(digits) <= nDigits

length(x) is the number of digits in the int variable x

Page 5

10. [6 marks] Consider the following class that represents a temperature in degrees Celcius or
degrees Fahrenheit:

public class Temperature {

private double degrees;

private String units; // INVARIANT: this.units is equal to "C" or "F"

public Temperature() {

this.degrees = 0.0;

this.units = "C";

}

/**

* Changes the units of this temperature to the specified units

* if the specified units is equal to "C" or "F", otherwise leaves

* the current units of this temperature unchanged.

*

* @param the desired units of this temperature

*/

public void setUnits(String units) {

if (units == "C" || units == "F") {

this.units = units;

}

}

public void getUnits() {

return this.units;

}

}

(a) [4 marks] List the test cases that you would use to test the setUnits method (i.e., list
the strings that you would use and the expected results for each string). For each test
case, use no more than one sentence to explain why you chose the test case.

Solution: DO NOT MARK. QUESTION INVOLVES MATERIAL NOT COVERED
BY THIS TEST.

(b) [2 marks] One of your test cases should reveal an error in the setUnits method; what is
the error in the method?

Solution: DO NOT MARK. QUESTION INVOLVES MATERIAL NOT COVERED
BY THIS TEST.

Page 6

11. [6 marks] A Range object represents a range of integer values. For example, the statement

Range r = new Range(-3, 5);

makes a Range object having a minimum value of -3 and a maximum value of 5; i.e., the object
represents the range of int values -3, -2, -1, 0, 1, 2, 3, 4, 5. The class invariant for
Range is that the minimum value of the range is less than or equal to the maximum value of
the range.

The methods min and max return the minimum and maximum values of a range:

Range r = new Range(-3, 5);

int lo = r.min(); // lo is -3

int hi = r.max(); // hi is 5

Suppose that you define a compareTo method for ranges using the following three rules:

1. x.compareTo(y) returns a negative integer if x.max() is less than y.min()
2. x.compareTo(y) returns a positive integer if x.min() is greater than y.max()
3. x.compareTo(y) returns zero if neither rule 1 nor rule 2 applies

(a) [4 marks] Suppose that equals returns true if and only if two ranges have the same
minimum and maximum values. Is compareTo consistent with equals?

Solution: No. Consider the two ranges x = new Range(0, 5) and y = new Range(3,
8). Rules 1 and 2 do not apply; therefore, x.compareTo(y) returns 0 but x.equals(y)
returns false.

(b) [2 marks] There is something wrong with defining compareTo for Range using the three
rules above. Describe an example where the Range version of compareTo leads to a non-
sensical result.

Solution: The rules do not define a total ordering of ranges. Consider the three
ranges:

Range x = new Range(0, 5);

Range y = new Range(3, 8);

Range z = new Range(6, 11);

Then

x.compareTo(y) returns 0 (x “equals” y)
y.compareTo(z) returns 0 (y “equals” z), but
x.compareTo(z) returns -1 (x is “less than” z)

Page 7

12. (a) [3 marks] The Nickel class has an equals method that has documentation that says “a
nickel is equal to all other nickels”. A student implements the equals method in the
Nickel class as follows:

@Override

public boolean equals(Nickel obj) {

return true;

}

State what errors, if any, are in the implementation. In your answer, try to refer to the
four requirements we have for the equals method in this course.

Solution: The main error is that the method has the wrong signature; Nickel should
be Object. As for the four requirements, the method fails to satisfy the requirement
that an object is never equal to null because it returns true if obj is null

(b) [3 marks] The Nickel class has a hashCode method that has documentation that says
the method “returns the issue year of the nickel”. A student implements the hashCode
method in the Nickel class as follows:

@Override

public int hashCode() {

return this.year;

}

The implementation correctly does what the documentation says it should, but hashCode
should not be implemented this way for Nickel. Explain why.

Solution: hashCode must return the same value for two objects that are equal. Be-
cause a nickel is equal to every other nickel, the field year must not be used to compute
the hash code.

Page 8

