
WRITTEN TEST 1A

This is a 45 minute test. The test is closed book (no aids are allowed).

Written question instructions

• There are 8 short answer questions, each worth 2 marks.
• There are 4 questions that require students to explain their answers, each

worth 6 marks.
• Answer the written questions in a text file named answers.txt—a suitable file

should open in a text editor when the test starts. Feel free to use a different
text editor if you wish.

• Make sure to save your work before submitting it! Every year a small number
of students end up submitting an empty file because they forgot to save their
work.

• You may submit your work as many times as you wish.
• A few minutes before the end of the test you will receive a warning that the

test is ending soon. The message will repeat every minute until the end of the
test. Use this time to submit your work; it is difficult to work effectively with
the message popping up every minute.

Submission instructions

• Open a terminal (if one is not already open)
• Find the directory where you have saved your answers.txt file; the file should

be in your home directory.
• Type the following command:

submit 2030 test1A answers.txt

and press enter.

1. [2 marks] Consider the following memory diagram:

variable name address value

x 32 100

s 36 100a

t 38 100a

u 40 120a

100 Point2 object

120 Point2 object

Complete the 4 lines of Java code below that would produce the given memory diagram:

int x =

Point2 s =

Point2 t =

Point2 u =

The actual coordinates of the points that you create are unimportant and are not shown in the
memory diagram.

Solution:

int x = 100;

Point2 s = new Point2(); // or any 2 double arguments

Point2 t = s;

Point2 u = new Point2(); // or any 2 double arguments

Page 2

2. [2 marks] What is the definition of the term state of an object?

Solution: The values of the fields of the object.

3. [2 marks] What is the purpose of a no-argument constructor?

Solution: To initialize the state of an object to a well-defined default state.

4. [2 marks] A class implementer is allowed to add a new constructor to a class as long as what
condition holds for the new constructor?

Solution: The new constructor must have a unique signature compared to the other con-
structors in the class.

5. [2 marks] If a class has a class invariant, what must every constructor ensure when it is finished
running?

Solution: The constructors must ensure that the class invariant is true.

6. [2 marks] What does the keyword this mean when used inside of a method?

Solution: this is a reference to the object used to call the method.

Page 3

7. [2 marks] Consider the method from Lab 0 having the following header:

public static int contains(double x, Range range)

What is the signature of the method?

Solution: contains(double, Range)

8. [2 marks] A student attempting to implement the equals method for the Nickel class in Lab 2
writes the following in their class:

@Override

public boolean equals(Nickel other) {

// body not shown, but guaranteed to return true or false

}

Their eclipse editor indicates that there is a compilation error in their method. What is wrong
with what the student has written?

Solution: The correct signature for equals is equals(Object)

Page 4

9. [6 marks] A piggy bank is a container (often in the shape of a pig) traditionally used by children
to keep coins. Suppose you would like to implement a class that represents a piggy bank. For
the purposes of this test, you may assume that the piggy bank holds only nickels, dimes, and
quarters.

Your class should have methods such as:

• addNickel, addDime, addQuarter : adds one nickel, one dime, or one quarter to the piggy
bank

• removeNickel, removeDime, removeQuarter : removes one nickel, one dime, or one quar-
ter from the piggy bank (if there is at least one of the required coin type in the piggy
bank)

• toString : returns a string describing the number of each coin type in the piggy bank;
for example "3 nickels, 8 dimes, 2 quarters"

What fields would you use to implement the class? In your answer, explain how many fields
you would use, their types, what the fields represent, and what invariants (if any) each field
has.

Solution: A field or fields are required to store the number of nickels, dimes, and quarters.
Many solutions are possible; below are a few possible solutions:

number type represents invariants

1 int number of nickels greater than or equal to zero
1 int number of dimes greater than or equal to zero
1 int number of quarters greater than or equal to zero

1 int[] or
List<Integer>

number of nickels, dimes,
and quarters

each element must be greater
than or equal to zero and size
of array or list equal to 3

1 Map<String,
Integer>

maps string describing the
coin to number of coins

each value must be greater
than or equal to zero and size
of the map equal to 3

Page 5

10. [6 marks] A year is always a leap year if it is evenly divisible by 400. If a year is not divisible
by 400, then it is a leap year if it is evenly divisible by 4 and not evenly divisibly by 100.

Considering the problem of writing unit tests for the following method:

/*

Returns true if year is a leap year, false otherwise.

If the specified year is less than zero then false is returned.

This method never throws an exception.

*/

public static boolean isLeapYear(int year) {

/* IMPLEMENTATION NOT SHOWN */

}

List the test cases that you would use to test the method (i.e., list the years that you would
use and the expected results for each year). For each test case, use no more than one sentence
to explain why you chose the test case.

In your answer, try to use the fewest number of test cases that would reliably test an imple-
mentation of isLeapYear.

Solution: DO NOT MARK. QUESTION INVOLVES MATERIAL NOT COVERED BY
THIS TEST.

Page 6

11. [6 marks] A Range object represents a range of integer values. For example, the statement

Range r = new Range(-3, 5);

makes a Range object having a minimum value of -3 and a maximum value of 5; i.e., the object
represents the range of int values -3, -2, -1, 0, 1, 2, 3, 4, 5. The class invariant for
Range is that the minimum value of the range is less than or equal to the maximum value of
the range.

The methods min and max return the minimum and maximum values of a range:

Range r = new Range(-3, 5);

int lo = r.min(); // lo is -3

int hi = r.max(); // hi is 5

Suppose that you define a compareTo method for ranges using the following three rules:

1. x.compareTo(y) returns a negative integer if x.max() is less than y.min()
2. x.compareTo(y) returns a positive integer if x.min() is greater than y.max()
3. x.compareTo(y) returns zero if neither rule 1 nor rule 2 applies

(a) [4 marks] Suppose that equals returns true if and only if two ranges have the same
minimum and maximum values. Is compareTo consistent with equals?

Solution: No. Consider the two ranges x = new Range(0, 5) and y = new Range(3,
8). Rules 1 and 2 do not apply; therefore, x.compareTo(y) returns 0 but x.equals(y)
returns false.

(b) [2 marks] There is something wrong with defining compareTo for Range using the three
rules above. Describe an example where the Range version of compareTo leads to a non-
sensical result.

Solution: The rules do not define a total ordering of ranges. Consider the three
ranges:

Range x = new Range(0, 5);

Range y = new Range(3, 8);

Range z = new Range(6, 11);

Then

x.compareTo(y) returns 0 (x “equals” y)
y.compareTo(z) returns 0 (y “equals” z), but
x.compareTo(z) returns -1 (x is “less than” z)

Page 7

12. A Range object represents a range of integer values. For example, the statement

Range r = new Range(-3, 5);

makes a Range object having a minimum value of -3 and a maximum value of 5; i.e., the object
represents the range of integer values -3, -2, -1, 0, 1, 2, 3, 4, 5. The class invariant
for Range is that the minimum value of the range is less than or equal to the maximum value
of the range.

The methods min and max return the minimum and maximum values of a range:

Range r = new Range(-3, 5);

int lo = r.min(); // lo is -3

int hi = r.max(); // hi is 5

Consider the following implementation of equals for Range:

/*

Two ranges are equal if and only if they have the same

minimum and maximum values.

*/

@Override

public boolean equals(Object obj) {

if (this == obj) {

return false;

}

if (this.getClass() != obj.getClass()) {

return false;

}

Range other = (Range) obj;

if (this.min() != other.min() &&

this.max() != other.max()) {

return false;

}

return true;

}

where the method min returns the minimum value of a range and the method max returns the
maximum value of a range.

(a) [2 marks] State what errors, if any, are in the implementation.

Solution: There are 3 errors: (1) the first if statement should return true instead
of false, (2) if obj is null then the method throws an exception, and (2) the method
returns true if the minimum values of both ranges are equal and the maximum values
are not equal (or if the minimum values of both ranges are not equal and the maximum
values are equal) because the && should be ||

(b) [4 marks] Are all parts of the equals contract provided by the implementation? If your
answer is yes, explain how the implementation provides each item of the equals contract.

Page 8

If your answer is no, state which parts of the equals contract are not supported and
explain why those parts of the contract are not supported.

Solution:

1. reflexive the method is not reflexive because the first if statement fails to
return true

2. symmetric the method is symmetric because all of the comparisons used in the
method are symmetric

3. transitive the method is not transitive. Consider the three ranges:

Range x = new Range(0, 5);

Range y = new Range(1, 5);

Range z = new Range(1, 15);

Then

x.equals(y) returns true (the maximum values are equal)
y.equals(z) returns true (the minimum values are equal)
x.equals(z) returns false (neither the minimum nore maximum values are
equal)

4. consistent the method returns the same value if the state of the two objects
remain the same; therefore the method is consistent

5. non-nullity the method does not support non-nullity because it throws an ex-
ception if obj is null instead of returning false

Page 9

