
WRITTEN TEST 2E

This is a 60 minute test. The test is closed book (no aids are allowed).

Written question instructions

• There are 8 short answer questions, each worth 2 marks.
• There are 3 questions that require students to explain their answers, each

worth 8 marks.
• Answer the written questions in a text file named answers.txt—a suitable file

should open in a text editor when the test starts. Feel free to use a different
text editor if you wish.

• Make sure to save your work before submitting it! Every year a small number
of students end up submitting an empty file because they forgot to save their
work.

• You may submit your work as many times as you wish.
• A few minutes before the end of the test you will receive a warning that the

test is ending soon. The message will repeat every minute until the end of the
test. Use this time to submit your work; it is difficult to work effectively with
the message popping up every minute.

Submission instructions

• Open a terminal (if one is not already open)
• Find the directory where you have saved your answers.txt file; the file should

be in your home directory.
• Type the following command:

submit 2030 test2E answers.txt

and press enter.



1. [2 marks] What is a public static final field normally used for?

Solution: To represent a constant value.

2. [2 marks] Consider the following class that represents a line segment connecting two points (its
start point and its end point):

public final class LineSegment {

private final Point2 start;

private final Point2 end;

public LineSegment(Point2 p1, Point2 p2) {

this.start = new Point2(p1);

this.end = new Point2(p2);

}

// remainder of class not shown

}

Which statement best describes the class LineSegment? Give your answer as A, B, C, or D.

A. LineSegment is an aggregation of two points

B. LineSegment is a composition of two points

C. LineSegment is mutable

D. LineSegment is a superclass

Solution: B

3. [2 marks] What must be true about the keys in a Java Map?

Solution: The keys must be unique.

4. [2 marks] What is the definition of the term privacy leak?

Solution: A privacy leak occurs when an object exposes a reference to a mutable field.

5. [2 marks] When a class has fields that are not of primitive type, we often need to consider
using composition instead of aggregation. What is the main disadvantage of using composition
instead of aggregation?

Page 2



Solution: The memory and time needed to create the defensive copies.

Page 3



6. [2 marks] What does the keyword final mean when it is used as a modifier on a method?

Solution: The method cannot be overridden.

7. [2 marks] Consider the following Java statement:

Counter c = new AscendingCounter();

Which class is the superclass and which class is the subclass? Write your answer like:

superclass:
subclass:

and complete each line with a class name.

Solution:
superclass: Counter
subclass: AscendingCounter

8. [2 marks] Which features of the superclass does a subclass inherit?

Solution: All of the non-private fields and methods (but not the constructors).

Page 4



9. Suppose that you have the following class:

public class Question {

public static int a = 1;

private static int b = 2;

public double f;

private double g;

// constructors not shown

public static void someMethod() {

// implementation not shown

}

public static void someMethod(Question q) {

// implementation not shown

}

public void anotherMethod(Question q) {

// implementation not shown

}

}

(a) [2 marks] What fields of Question can someMethod() use?

Solution: someMethod can only use the static fields (a and b).

(b) [4 marks] What fields of Question can someMethod(Question q) use? If your answer is
different than your answer to part (a), explain why.

Solution: someMethod(Question) can use the static fields (a and b) and it can use
the non-static fields as long as it uses the reference q to do so. The answer is different
from (a) because there is a parameter of type Question in this method.

(c) [2 marks] What fields of Question can anotherMethod(Question q) use? If your answer
is different than your answer to part (b), explain why.

Solution: anotherMethod can use any field of the class because it is a non-static
method.

Page 5



10. Consider the following class

public class DeckOfCards {

private Set<Card> cards;

public DeckOfCards() {

/* IMPLEMENTATION NOT SHOWN but sets this.cards to be equal to

standard deck of 52 playing cards */

}

public DeckOfCards(DeckOfCards other) {

this.cards = new HashSet<>();

for (Card card : other.cards) {

this.cards.add(card);

}

}

public Set<Card> getCards() {

/* IMPLEMENTATION NOT SHOWN */

}

}

(a) [2 marks] Consider only the copy constructor of DeckOfCards; what is the name of the
relationship between DeckOfCards and its set this.cards?

Solution: Composition (not aggregation because the copy constructor makes a new
set).

(b) [2 marks] The copy constructor of DeckOfCards makes a copy of of other.cards. What
kind of copy does the copy constructor make?

Solution: A shallow copy (no new Card objects are made).

(c) [3 marks] Consider the following program that uses DeckOfCards:

public class Test {

public static void main(String[] args) {

DeckOfCards deck = new DeckOfCards();

Set<Card> deckCards = deck.getCards();

System.out.println(deckCards == deck.getCards());

}

}

Assuming that no privacy leak occurs and that there are no additional fields in DeckOfCards
what does the program print? Explain your answer.

Solution: The program must print false because getCards must return a new set
each time if no privacy leak occurs.

Page 6



(d) [1 mark] Assuming that no privacy leak occurs and that there are additional fields in
DeckOfCards what does the program print? Explain your answer.

Solution: The program can print either false or true if additional fields are allowed.
The additional field could be a copy of the set this.cards

The above is sufficient to receive the 1 mark for the question; to illustrate how
getCards might be implemented consider the following:

// this.copy is a Set<Card>

// DeckOfCards never uses this.copy except in getCards

public Set<Card> getCards() {

if (!this.cards.equals(this.copy)) {

this.copy = new ArrayList<>(this.cards);

}

return this.copy;

}

The above implementation of getCards has no privacy leak even though it returns a
reference to the field this.copy because the class does not use the field for anything
except this method. If a user modifies this.copy so that it is no longer equal to
this.cards then the method makes a new copy of this.cards and returns a new
copy.

Page 7



11. Consider the following two classes related by inheritance:

public class Lock {

private static int numLocks = 0;

private long id;

private boolean isLocked;

public Lock() {

this.id = Lock.numLocks;

this.lock();

Lock.numLocks = Lock.numLocks + 1;

// [PART (a)]

}

protected void lock() {

this.isLocked = true;

}

protected void unlock() {

this.isLocked = false;

}

}

public class CombinationLock extends Lock {

private Combination combo;

public CombinationLock(Combination combo) {

this.combo = new Combination(combo);

}

@Override

protected void lock() {

[PART (b)]

this.combo.shuffle(); // randomly shuffles the dials on the lock

}

@Override

public boolean equals(Object obj) {

if (!super.equals(obj)) {

return false;

}

CombinationLock other = (CombinationLock) obj; // [PART (c)]

if (!this.combo.equals(other.combo)) {

return false;

}

return true;

}

}

Page 8



(a) [2 marks] For this part of the question, assume that there are no subclasses of Lock.

When the Lock constructor reaches the line labelled [PART (a)] you know that the lock
will be locked. What else do you know is true about every Lock object when the line
labelled [PART (a)] is reached?

Solution: That every lock will have a unique id.

For the remaining parts of this question, assume that there may be subclasses of Lock.

(b) [2 marks] What would you write on the line labelled [PART (b)] to complete the CombinationLock
version of the method lock()?

Solution: super.lock();

The field isLocked is private so it cannot be accessed directly by CombinationLock.

(c) [2 marks] On the line with the comment [PART (c)] is the cast safe (in other words, is
obj guaranteed to be a CombinationLock reference)? Explain why you answered ‘yes’ or
‘no’.

Solution: The cast is safe because Lock does not override equals. This means that
super.equals(obj) is true if and only if this CombinationLock and obj have the
same memory address, which means that the cast only occurs if this CombinationLock
and obj refer to the same CombinationLock.

(The explanation must be partly correct to receive part marks; answering yes with an
incorrect answer should not receive any marks).

(d) [2 marks] CombinationLock overrides the equals method; is this override required to
check if two CombinationLock instances are equal? Justify your answer.

Solution: The override is not required because Lock does not override equals. This
means that super.equals(obj) is true if and only if this CombinationLock and obj
have the same memory address, which means that this.combo.equals(other.combo)
will always be true.

(The explanation must be partly correct to receive part marks; answering yes with an
incorrect answer should not receive any marks).

Page 9


