WRITTEN TEST 2B

This is a 45 minute test. The test is closed book (no aids are allowed).

Written question instructions

e There are 8 short answer questions, each worth 2 marks.

e There are 3 questions that require students to explain their answers, each
worth 8 marks.

e Answer the written questions in a text file named answers. txt—a suitable file
should open in a text editor when the test starts. Feel free to use a different
text editor if you wish.

e Make sure to save your work before submitting it! Every year a small number
of students end up submitting an empty file because they forgot to save their
work.

e You may submit your work as many times as you wish.

e A few minutes before the end of the test you will receive a warning that the
test is ending soon. The message will repeat every minute until the end of the
test. Use this time to submit your work; it is difficult to work effectively with
the message popping up every minute.

Submission instructions

e Open a terminal (if one is not already open)

e Find the directory where you have saved your answers. txt file; the file should
be in your home directory.

e Type the following command:

submit 2030 test2B answers.txt

and press enter.




1. [2 marks] What does the modifier final mean when applied to a field of a class?

Solution: The field can be assigned a value only once.

2. [2 marks] Consider the following class that represents a line segment connecting two points (its
start point and its end point):
public final class LineSegment {

private final Point2 start;
private final Point2 end;

public Line(Point2 pl, Point2 p2) {
this.start = new Point2(pl);
this.end = new Point2(p2);

}

public Point2 getStart() {
return new Point2(this.start);

}

public Point2 getStop() {
return new Point2(this.stop);

}
b

Which statement best describes the class LineSegment? Give your answer as A, B, C, or D.

A. LineSegment is an aggregation of two points
B. LineSegment is a composition of two points
C. LineSegment is mutable

D. LineSegment has a privacy leak

Solution: B

3. [2 marks] How could you use a Java Map to emulate the functionality of a Java List<String>?
(In other words, what would the keys of the map represent and what would the values of the
map represent?) Hopefully, you would never actually do this.

Solution: The keys would be the indices and the values would be strings.

4. [2 marks] What is a Java interface?

Page 2



Solution: A set of method declarations (and their contracts).

5. [2 marks] When a class has fields that are not of primitive type, we often need to consider using
composition instead of aggregation. Why is composition often required instead of aggregation?

Solution: To maintain class invariants, or to prevent changes in state from outside of the

class.

6. [2 marks] Is an overridden method also an overloaded method? Explain your answer using one

sentence.

Solution: No, an overridden method has the same signature as the superclass method
whereas overloaded methods have different signatures.

7. [2 marks] Consider the following inheritance hierarchy:

OHYwH> >

Which class or classes are substitutable for the class named B?

Solution: B and C

8. [2 marks] What should the first line of a subclass constructor do?

Solution: Call another constructor (often in the superclass).

Page 3




9. Consider the following implementation of a class named Counter:

public final class Counter {

}

private static final Map<String, Counter> counters

private String name;
private int value;

private Counter(String name) {

public

public

public

public

public

this.name = name;
this.value = 0;

String name() {
return this.name;

int value() {
return this.value;

void incr() {
this.value++;

void reset() {
this.value = 0;
static getCounter(String name) {

if (Counter.counters.contains(name)) {
return Counter.counters.get(name);

}

else {
Counter ¢ = new Counter(name) ;
Counter. counters.put(name, c);
return c;

}

new HashMap<String, Counter>();

The Counter class is an example of a well-known design pattern used in software engineering.

Page 4



(a) [2 marks] The method getCounter(String) is a static method that returns a reference
to a new object; what is the name given to such kinds of methods?

Solution: static factory method (or just factory method)

(b) [2 marks] Consider the following fragment of code that uses the Counter class:

public class UseCounter {

public static void strike(Counter strikes, Counter outs) {
strikes.incr();
if (strikes.value() == 3) {
outs.incr();
strikes.reset();

public static void main(String[] args) {
Counter cl = Counter.getCounter("strikes");
Counter c2 = Counter.getCounter("outs");
Counter c3 = Counter.getCounter("strikes");

strike(cl, c2);
strike(cl, c2);
strike(c3, c2);
// HERE

}

On the line with the comment HERE how many Counter objects are in memory?

Solution: 2 (one counter with the name strikes and a second with the name outs)

(c) [2 marks] See part (b). On the line with the comment HERE what is the count held by c1,
c2, and c37

Solution:
cl0
c21
c30

cl and c3 are aliases; thus, they have the same value.

(d) [2 marks] See part (b). Is it possible to change the name of any of the Counters referenced
by c1, c2, or c3?7 Explain your answer using one or two sentences.

Solution: No because strings are immutable (and the class does not provide a method
to change the name).

Page 5



10. Consider the following class that represents an integer number having up to Integer.MAX_VALUE

digits:
/:’: %

* An integer value having up to as many digits as will fit in a list.

* A BigInt object owns all of its digits.

7':/
public class BigInt {

private List<Digit> digits;

public BigInt(List<Digit> d) {
/% IMPLEMENTATION NOT SHOWN */
}

public int numDigits() {
return this.digits.size();

}

public Digit getDigit(int index) {
/* IMPLEMENTATION NOT SHOWN */
/* RETURNS THE DIGIT AT THE SPECIFIED INDEX IN THE NUMBER */

}

// Multiplies this number by 10 to the power x; x may be negative.
public void timesl®@toPower(int x) {
timesl®toPower(x, this.digits);

}

// RECURSIVELY MULTIPLIES THE BIGINT REPRESENTED BY t BY

// 10 RAISED TO THE POWER x USING INT ARITHMETIC;

// x MAY BE NEGATIVE

private static void timesl®toPower(int x, List<Digit> t) {
/* BASE CASE(S) NOT SHOWN */

if (x <0 {
t.remove(t.size() - 1);
timesl®OtoPower(x + 1, t);

}
else {
t.add(new Digit(0));
timesl®OtoPower(x - 1, t);
}

Page 6



(a)

[2 marks] Assuming that Digit is immutable, what would you do to complete the con-
structor of BigInt? You can answer this question by writing Java code or you can briefly
describe what is required.

Your answer for part (a) should have an important difference compared to your answer
for part (b).

Solution: Make a shallow copy of d; a copy is required for the BigInt to own its
digits, but a deep copy is not required if Digit is immutable.

this.digits = new ArrayList<>(d);
(2 marks for a suitable explanation or for the correct Java code)

(1 mark if the answer states that a copy or a defensive copy is required but does not
state that a shallow copy is sufficient)

[2 marks| Assuming that Digit is mutable, what would you do to complete the constructor
of BigInt? You can answer this question by writing Java code or you can briefly describe
what is required.

Your answer for part (b) should have an important difference compared to your answer
for part (a).

Solution: Make a deep copy of d; a copy is required for the BigInt to own its digits,
and a deep copy is required if Digit is mutable otherwise changing a digit in d will
change the digit in the number.

this.digits = new ArrayList<>();

for (Digit dig : d) {
this.digits.add(dig);

}

(2 marks for a suitable explanation or for the correct Java code)

[2 marks] Three base cases are required for the recursive method times1@toPower.
What is one of the suitable base cases for the recursive method timeslQ@toPower? The
method should not throw an exception for any argument list t unless the size of the list
exceeds Integer.MAX_VALUE or if the Java Virtual Machine runs out of memory.

If you need to make a new Digit assume that Digit has a constructor that accepts the
value of the digit.

Solution: See part (c) for all 3 base cases.

(2 marks for any of the base cases)

[2 marks] What is a second of the suitable base cases for the recursive method times1@toPower?

The method should not throw an exception for any argument list t unless the size of the
list exceeds Integer.MAX_VALUE or if the Java Virtual Machine runs out of memory.

If you need to make a new Digit assume that Digit has a constructor that accepts the
value of the digit.

Page 7



Solution: (2 marks for any of the base cases below)

One base case occurs if x is equal to 0 which is equivalent to multiplying the number
by 1.

if (x==0) {
return;

3

(2 marks for a suitable explanation or for the correct Java code)

A second base occurs when t has one digit and x is negative; this is equivalent to
dividing by a power of 10 which would cause the value of the number to become 0.

if (x <0 & t.size() == 1) {
t.remove(®);
t.add(new Digit(0));
return;

}

(2 marks for a suitable explanation or for the correct Java code)

The third base case occurs when t has Integer.MAX_VALUE digits and x is positive.
It is impossible to add digits to the number (because the list cannot hold any more
digits) so the method should throw an exception.

if (x > 0 & t.size() == Integer.MAX_VALUE) {
throw new IllegalArgumentException(); // or any other exception

3

Page 8




11. Consider the following two classes related by inheritance:

public class Lock {
private boolean isLocked;

protected Lock() {
this.isLocked = false; // UNUSUAL BECAUSE WE LOCK THE LOCK ON THE NEXT LINE
this.lock(Q);

}

public boolean isLocked() {
return this.isLocked;

}

public void lock() {
this.isLocked = true;

}

protected void unlock() {
this.isLocked = false;

}
public class KeyedLock extends Lock {

private boolean isLocked;
private Key key;

public KeyedLock(Key k) {

[PART (a)]
this.isLocked = true;
this.key = k;

}

@verride

public void lock() {
this.isLocked = true;

}

public void unlock(Key tryMe) {
if (this.key.equals(tryMe)) {
this.isLocked = false;
}

Page 9



(a) [2 marks] What would you write on the line labelled [PART (a)] to complete the
KeyedLock constructor? Explain if the line that you would write is actually required in
this case.

Solution: You could write super(); but the line is not required because the super-
class no-argument constructor will be called automatically if you do not include the
line.

Alternatively, you could write super.lock(); which is also not required because the
superclass no-argument constructor will be called automatically if you do not include
the line.

(2 marks if a suitable answer and explanation is given)

(b) [2 marks] Consider the following fragment of Java code:

Lock k = new KeyedLock();
System.out.println(k.isLocked());

Assume that the constructor has been modified according to your answer in Part (a).
What is printed when the fragment of code is run? Explain your answer.

Solution: Surprisingly, false is printed if you call the superclass constructor in the
subclass constructor. When the KeyedLock constructor runs, the Lock constructor
is called. The Lock constructor sets the field isLocked to false before calling the
lock(); method. KeyedLock overrides lock() so the KeyedLock version of lock()
runs. The KeyedLock version of lock() sets the field isLocked to true in KeyedLock
but it does not set isLocked in Lock. The isLocked() method in Lock uses the
isLocked field in Lock which is false.

If you answered super.lock(); in part (a) then true is printed because the superclass
version of lock() is called (instead of the overridden version) and the superclass field
isLocked will be set correctly.

(2 marks if the answer is false and the explanation states that the field isLocked is
set to true in KeyedLock but not in Lock)

(c) [2 marks] What significant error has the implementer of Lock made?

Solution: They called a non-final method in the constructor.

(d) [2 marks] What significant error has the implementer of KeyedLock made? How does this
error affect the user of KeyedLock when they try to unlock the lock?

Solution: Two errors have been made. The first error is that the implementer has
added a field (isLocked) that that the superclass is responsible for. The second er-
ror is that they did not call the superclass version of the method unlock to set the

Page 10




isLocked field in Lock.

(2 marks for stating either error)

Page 11




