M COMPUTER ORGANIZATION AND DESIGN miscv

The Hardware/Software Interface Edition

MORGAN EAUFHANN

EECS2021E

Computer Organization

Amir Ashouri
York University
Fall 2019

These slides are based on the slides by the authors.
The slides doesn’t include all the material covered in the lecture.
The slides will be explained, modified, and sometime corrected in
the lecture.

Course Staff

Instructor:
Amir Ashouri ()
Office Hours: Wednesdays (will be announced)

TAs: (will be announced)
Main point of contact for your course labs
Lab Hours:
LAB 01 (Mondays) 19:00-22:00 (YK LAS 1006)
LAB 02 (Tuesdays) 19:00-22:00 (YK LAS 1006)

mailto:aashouri@eecs.yorku.ca
https://wiki.eecs.yorku.ca/course_archive/2019-20/F/2021E

Course Textbook

Required Textbook:

“‘Computer Organization and Design
RISC-V Edition: The Hardware
Software Interface”

(The Morgan Kaufmann Series in
Computer Architecture and Design)

David A. Patterson & John L. Hennessy
1st edition.

Tentative Schedule

Date Lecture Content Labs
; Sep 9 to 11 Chapter 1, Chapter 2 (2.1 - 2.4)
Sep 9to 11 Chapter 2 (2.5 - 2.7)
2
Sep 16 to 20 Chapter 2 (2.8)
Lab 1
B Sep 23 to 27 Chapter 2 (2.9 - 2.11) Lab 2
’ Sep 30to Oct 4 Chapter 2 Lab 3
Oct 7 to Oct 11 Chapter 3
5 Lab 4
. Oct 14 to Oct 18 Fall Reading Week - NO CLASSES
Oct 21 to Oct 25 Chapter 3 .
7 MidTerm
B Oct 28 to Nov 1 Chapter 3 Lab 5
Nov 4 to Nov 1 Chapter 3
9 Lab 6
10 Oct 28 to Nov 1 Chapter 3 Lab 7
Oct 28 to Nov 1 Chapter 4
11 Lab 8
12 Apr 1 to Apr5 Chapter 4
13 Apr 8 to Apr 12 Chapter 4

MORGAN KAUFMANN

2 MK

Prerequisites

General Prerequisite

Basic Understanding of Programing

Labs (@ LAS 1006)

We will use York’s inhouse RISK-V simulator
for our lab assignments

RISK-V Simulator (1/2)

@ RVS (RISC-V Visual Simulator) v0.30 - (w] X
File | Frame: | Help
|
Assembly Source Window Assembly Listing Window
It functions as a simple text editor. Shows the assembly listing of the program in
You can either type a new assembly program the Assembly Source Window on the left. The
or load an existing program from a file using listing is created when the Compile button is
the File menu. Then you can edit the pressed and generated columns are
assembly text and save it in the same or a controlled by the check-boxes in the bottom of
different file. the left window
Compile | ¥ BIN ¥ HEX ¥ INT ¥ TXT Source | IntPC |odmmmermreec START | Stop | Run | Net | ™ g Listing
Registers View Memory View Window Execution Tracing Input &Output
Window Shows all the values Window Windows
Shows the contents currently stored in the Shows the machine
of the Integer and RAM in hexadecimal, instructions as executed output shown
the Floating point integer, and floating when the program is run here
registers of the CPU point formats or stepped through
Cow | " ou
input typed here

<
Refresh | ¥ HEX & INT © FLP Reg;l Refresh | ¥ HEX ¥ INT ¥ FLP W TXT Memary | Clear | Exe(\nlonl Cancel Enter | ™ INF

2 MK

MORGAN KAUFMANN

\ RISK-V Simulator (2/2)

RVS (RISC-V Visual Simulator) v0.46

ile | Fname:

|-Ie|p

addi x5, x@, 1

ASSEMBLY LISTING
ADDRESS BIN/HEX CODE HEX OPERANDS INT OPERANDS
Ox I 1 00000 000 00101 0010011 addi x5 x0 0x001 addi x5,x0,1

SYMBOL TABLE
0x0000000000000000 START

Compile [BIN [HEX @ INT @ TXT

INT Regs

X0 zero 0x0000000000000000
x1 ra 0x0000000000000000
X2 sp 0x0000000000000000
X3 gp ©x0000000000000000
X4 tp 0x0000000000000000
X5 t0 0x0000000000000000
x6 tl ©x0000000000000000
X7 t2 0x0000000000000000
x8 sO 0x0000000000000000
x9 sl 0x0000000000000000
x10 a@ ©x0000000000000000
x11 a1 ©x@000000000000000
x12 a2 0x0000000000000000
x13 a3 0x@000000000000000
x14 a4 0x0000000000000000
x15 a5 ©x@000000000000000
x16 a6 ©x@000000000000000
x17 a7 0x0000000000000000
x18 s2 0x0000000000000000
x19 s3 0x@000000000000000
X20 s4 0x0000000000000000
X21 s5 0x0000000000000000

SESESENE KR RCRCRURCRSESEE B RRRSNS RN

Source In|tPC 0x0000000000000000 START Stop Next @@ TXT Listing

MEMORY
ADDRESS HEXADECIMAL INTEGER
Clear DMA OUT

Refresh @ HEX @ INT @ FLP

MORGAN KAUFMANN

Regs| Refresh @ HEX @ INT @ FLP @ TXT Mem ||| Clear Exec Cancel = Enter DMA 'Npl

Grade Composition

Lab 30%
Midterm 30%
Final 40%

EECS2021E Course Description

Features RISC-V, the first such
architecture designed to be used in
modern computing environments, such as
cloud computing, mobile devices, and
other embedded systems

Includes relevant examples, exercises,
and material highlighting the emergence of
mobile computing and the cloud

What You Will Learn

How programs are translated into the
machine language
And how the hardware executes them

The hardware/software interface

What determines program performance
And how it can be improved

How hardware designers improve
performance

Chapter 1 — Computer Abstractions and Technology — 10

The Computer Revolution

Progress in computer technology
Underpinned by Moore’s Law

Makes novel applications feasible
Computers in automobiles
Cell phones
Human genome project
World Wide Web
Search Engines

Computers are pervasive

Chapter 1 — Computer Abstractions and Technology — 11

Classes of Computers

Supercomputers

High-end scientific and engineering
calculations

Highest capabillity but represent a small
fraction of the overall computer market

Embedded computers
Hidden as components of systems
Stringent power/performance/cost constraints

Chapter 1 — Computer Abstractions and Technology — 12

The PostPC Era

*
1400
1200
Tablet
1000
800

Smart phone sales
600 /
400

PC (not including
200 / tablet)

Cell phone (not
including smart phone)

2007 2008 2009 2010 2011 2012

0

Chapter 1 — Computer Abstractions and Technology — 13

The PostPC Era

Personal Mobile Device (PMD)

Battery operated

Connects to the Internet

Hundreds of dollars

Smart phones, tablets, electronic glasses
Cloud computing

Warehouse Scale Computers (WSC)

Software as a Service (SaaS)

Portion of software run on a PMD and a
portion run in the Cloud

Amazon and Google

.. Chapter 1 — Computer Abstractions and Technology — 14

Understanding Performance

Algorithm

Determines number of operations executed

Programming language, compiler, architecture

Determine number of machine instructions executed
per operation

Processor and memory system
Determine how fast instructions are executed

/O system (including OS)

Determines how fast I/O operations are executed

Chapter 1 — Computer Abstractions and Technology — 15

Eight Great Ideas

Design for Moore’s Law

Use abstraction to simplify design
Make the common case fast
Performance via parallelism
Performance via pipelining
Performance via prediction
Hierarchy of memories

Dependability via redundancy

Chapter 1 — Computer Abstractions and Technology — 16

Below Your Program

Application software
Written in high-level language

System software

Compiler: translates HLL code to
machine code

Operating System: service code

Handling input/output
Managing memory and storage
Scheduling tasks & sharing resources

Hardware
Processor, memory, I/O controllers

Chapter 1 — Computer Abstractions and Technology — 17

Levels of Program Code

. High-level swap(int v[], int k)
High-level language angage it temp: o,
. (inC) vik] = v[k+1];
Level of abstraction closer vIk+1] = temp:

}

to problem domain
Provides for productivity Coompter)
and portability

Assembly language IR

program

. (for RISC-V) 1d x5, 0(x6)
Textual representation of 1T 806
instructions Jalr 0. 00xD)

Hardware representation
Binary digits (bits) Geomed
EnCOded inStrUCtiOnS and Binary machine 00000000001101011001001100010011

dat language 00000000011001010000001100110011
a program 00000000000000110011001010000011
(for RISC-V) 00000000100000110011001110000011

00000000011100110011000000100011
00000000010100110011010000100011
00000000000000001000000001100111

Chapter 1 — Computer Abstractions and Technology — 18

Components of a Computer

Same components for
all kinds of computer

Desktop, server,
, embedded

Input/output includes

User-interface devices
Display, keyboard, mouse
Storage devices
Hard disk, CD/DVD, flash

Network adapters

For communicating with
other computers

Chapter 1 — Computer Abstractions and Technology — 19

Inside the Processor (CPU)

Datapath: performs operations on data
Control: sequences datapath, memory, ...

Cache memory

Small fast SRAM memory for immediate
access to data

Chapter 1 — Computer Abstractions and Technology — 20

| Abstractions

Abstraction helps us deal with complexity
Hide lower-level detalil

Instruction set architecture (ISA)
The hardware/software interface

Application binary interface
The ISA plus system software interface

Implementation
The details underlying and interface

— ‘\, Chapter 1 — Computer Abstractions and Technology — 21

Technology Trends

Electronics
technology
continues to evolve

Increased capacity
and performance

Reduced cost

10,000,000 -

1,000,000

city

Kbit capa:

100 ~

10

100,000 A

10,000 A

1000 -

1G

512M
. oam 256M

64M
4M

M
256K _2

T T T T T T T T T T T T T T T T T 1
1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

Year of introduction

DRAM capacity

Year | Technology Relative performance/cost
1951 | Vacuum tube 1
1965 | Transistor 35
1975 | Integrated circuit (IC) 900
1995 | Very large scale IC (VLSI) 2,400,000
2013 | Ultra large scale IC 250,000,000,000

Chapter 1 — Computer Abstractions and Technology — 22

Semiconductor Technology

Silicon atoms: semiconductor

Add materials to transform properties:
Conductors N or P.
Switch Combine them to make switches.

Chapter 1 — Computer Abstractions and Technology — 23

Manufacturing ICs

Blank
Silicon ingot wafers
processing steps
Tested dies Tested Patterned wafers
00 wafer TN
Bond die t D%&DDDED i Waf (and
ond die to . afer \ \
package OOxXOO Rk q tester S)
(. S\ l/ |
l oo \
Packaged dies Tested packaged dies
Part @ Ship to

tester customers

Yield: proportion of working dies per wafer

Chapter 1 — Computer Abstractions and Technology — 24

Intel Core i7 Wafer

300mm wafer, 280 chips, 32nm technology
Each chip is 20.7 x 10.5 mm

Chapter 1 — Computer Abstractions and Technology — 25

Integrated Circuit Cost

Cost per wafer

Cost per die = — ;
Dies per wafer x Yield

Dies per wafer ~ Wafer area/Die area

1

Yield = : >
(1+ (Defects per area xDie area/2))

Nonlinear relation to area and defect rate
Wafer cost and area are fixed
Defect rate determined by manufacturing process
Die area determined by architecture and circuit design

Chapter 1 — Computer Abstractions and Technology — 26

Which airplane has the best performance?

Defining Performance

[[[[
Boeing 777 | Boeing 777 |
Boeing 747 Boeing 747
BAC/Sud | BAC/Sud | |
Concorde Concorde |
Douglas Douglas DC- |
DC-8-50 8-50 T T T T
0 100 200 300 400 500 0 2000 4000 6000 8000 10000
O Passenger Capacity O Cruising Range (miles) |
[[
Boeing 777 Boeing 777 | | |
Boeing 747 Boeing 747 |
BAC/Sud | BAC/Sud | |
Concorde Concorde
Douglas Douglas DC-
DC-8-50 :5 gs0 — 1
0 500 1000 1500 0 100000 200000 300000 400000
|0 Cruising Speed (mph) | |0 Passengers x mph |

Chapter 1 — Computer Abstractions and Technology — 27

2 VK

MORGAN KAUFMANN

Response Time and Throughput

Response time
How long it takes to do a task
Throughput

Total work done per unit time
e.g., tasks/transactions/... per hour

How are response time and throughput affected
by
Replacing the processor with a faster version?
Adding more processors?

We’'ll focus on response time for now...

Chapter 1 — Computer Abstractions and Technology — 28

Relative Performance

Define Performance = 1/Execution Time
“Xis n time faster than Y”

Performance, /Performance,
= Execution time, /Execution time, =n

Example: time taken to run a program
10son A, 15s on B

Execution Timeg / Execution Time,
=15s/10s=1.5

So Ais 1.5 times faster than B

Chapter 1 — Computer Abstractions and Technology — 29

Measuring Execution Time

Elapsed time
Total response time, including all aspects
Processing, 1/0O, OS overhead, idle time
Determines system performance
CPU time
Time spent processing a given job
Discounts 1/O time, other jobs’ shares
Comprises user CPU time and system CPU
time
Different programs are affected differently by
CPU and system performance

Chapter 1 — Computer Abstractions and Technology — 30

CPU Clocking

Operation of digital hardware governed by a
constant-rate clock

<«—Clock period—»

Clock (cycles) B
Data transfer
and computation < >< >< >
Update state <:> O O

Clock period: duration of a clock cycle
e.g., 250ps = 0.25ns = 250%10-12s

Clock frequency (rate): cycles per second
e.g., 4.0GHz = 4000MHz = 4.0x10°Hz

Chapter 1 — Computer Abstractions and Technology — 31

| CPU Time

CPU Time = CPU Clock Cyclesx Clock Cycle Time

~ CPUClock Cycles
Clock Rate

Performance improved by
Reducing number of clock cycles

Increasing clock rate

Hardware designer must often trade off clock
rate against cycle count

f Chapter 1 — Computer Abstractions and Technology — 32

CPU Time Example

Computer A: 2GHz clock, 10s CPU time
Designing Computer B

Aim for 6s CPU time on this computer

Can do faster clock, but this causes 1.2 x clock cycles for
the rest of the CPU design

How fast must Computer B clock be?

Clock Rate, = Clock Cyclesg _ 1.2xClock Cycles,

CPU Time, 6s
Clock Cycles, = CPU Time , xClock Rate ,

=10sx2GHz = 20x10°

1.2x20x10° B 24 x10°
6Ss 6S

=4GHz

Clock Rate; =

Chapter 1 — Computer Abstractions and Technology — 33

| Instruction Count and CPI

Clock Cycles = Instruction Count x Cycles per Instruction

CPU Time = Instruction Count x CPIx Clock Cycle Time

nstruction Count x CPI
Clock Rate

Instruction Count for a program
Determined by program, ISA and compiler

Average cycles per instruction

Determined by CPU hardware

If different instructions have different CPI
Average CPI affected by instruction mix

A \V Chapter 1 — Computer Abstractions and Technology — 34

| CPIl Example

Computer A: Cycle Time = 250ps, CPI =2.0
Computer B: Cycle Time = 500ps, CPl =1.2
Same ISA

Which is faster, and by how much?

CPU TimeA = Instruction Count x CPIA x Cycle TimeA

=1x2.0x250ps =Ix500ps «——| Ais faster...
CPU TimeB = Instruction Count x CPIB x Cycle TimeB
=1x1.2x500ps =1x600ps
CPU Timep _1x600ps »
CPUTime, 1x500ps

d—
<«

...by this much

Chapter 1 — Computer Abstractions and Technology — 35

| CPIl in More Detalil

If different instruction classes take different
numbers of cycles

Clock Cycles = » (CPI, xInstruction Count,)
i=1

Weighted average CPI

CP| Clock. Cycles _ Z(Cpli y Instructllon Countij
Instruction Count 5 Instruction Count

Relative frequency

x \V Chapter 1 — Computer Abstractions and Technology — 36

CPIl Example

Alternative compiled code sequences using
instructions in classes A, B, C

Class A B C

CPI for class 1 2 3

IC in sequence 1 2 1 2

IC in sequence 2 4 1 1

Sequence 1: IC =5 Sequence 2: IC =6

Clock Cycles Clock Cycles
=2x1 + 1x2 + 2x%3 =4x1 + 1%x2 + 1x3
=10 =9
Avg. CPI1=10/5=2.0 Avg. CPI=9/6 = 1.5

Chapter 1 — Computer Abstractions and Technology — 37

Performance Summary

CPU Time — Instructions y Clock cycles Seconds

X
Program Instruction Clock cycle

Performance depends on
Algorithm: affects IC, possibly CPI
Programming language: affects IC, CPI
Compiler: affects IC, CPI
Instruction set architecture: affects IC, CPI, T,

Chapter 1 — Computer Abstractions and Technology — 38

Power Trends

10,000 + 3600 67 3300 3400 T 120
2000 . O

1+ 100
T 1000 + _
s T8 £
77 =
ﬁ 100 4 T60 =
=
S 12.5 16 440 2
3 (s

8 104 B—H
3.3 4.1 T20
11 &—T—&— : | | | | | | 0

—_— — —_ — - QD < e Q,\ q’/\
Y 8w 29 Es e T2 LTE-oaoc 255 28
= oo} 0 = SQ EeTr EQY V&K ovs ot«
8o 8o 39 o =2 SEo 232 288 s¥o smo
T D o D — T Ego =%0 o o=y oy

o~ D o g:c\\‘, ahy ~— Oa— Gv ;‘v
L as o x =

In CMOS IC technology

Power = Capacitive load x Voltage* x Frequency

\ \ \

x30 o5V — 1V x1000

Chapter 1 — Computer Abstractions and Technology — 39

Reducing Power

Suppose a new CPU has
85% of capacitive load of old CPU
15% voltage and 15% frequency reduction

P._. _ C,,x0.85x(V ,x0.85)° xF_, x0.85 _0.85—0.52

Py Coq X Vold2 X Foiq

The power wall
We can’t reduce voltage further
We can’'t remove more heat

How else can we improve performance?

Chapter 1 — Computer Abstractions and Technology — 40

Uniprocessor Performance

100,000

Intel Xeon 4 cores 3.6 GHz (Boost to 4.0)
Intel Core i7 4 cores 3.4 GHz (boost to 3.8 GHz)
Intel Xeon 6 cores, 3.3 GHz (boost to 3.6 GHz) 34,067
Intel Xeon 4 cores, 3.3 GHz (boost to 3.6 GHz) 000
Intel Core i7 Extreme 4 cores 3.2 GHz (boost to 3.5 GHz) e~ 4 1291
Intel Core Duo Extreme 2 cores, 3.0 GHz -5 !

- 1,
Intel Core 2 Extreme 2 cores, 2.9 GHz -‘1‘9,4342

B T e PSR AMD Athlon 64, 2.8 GHz -2 2=
AMD Athlon, 2.6 GHz __--¢
Intel Xeon EE 3.2 GHz

Intel VC820 motherboard, 1.0 GHz Pentium Il processor

Professional Workstation XP1000, 667 MHz 21264A
4000 - weeemeeeeee e en e e Digital AlphaServer 8400 8/575, 575 MHz 21264,

...

T eIttt et e

Performance (vs. VAX-11/780)

IBM RS6000¢540, 30 MHz
MIPS M2000, 25 MHz
MIPS M/120, 16.7 MHz

1.5, VAX-11/785

T T T T T T T T T T T T T T T
1982 1984 1985 1988 1900 1992 1994 1996 1008 2000 2002 2004 200! 2008 2010 2012 2014

Constrained by power, instruction-level parallelism,
memory latency

MORGAN KAUFMANN

<
A

Chapter 1 — Computer Abstractions and Technology — 41

Multiprocessors

Multicore microprocessors
More than one processor per chip

Requires explicitly parallel programming

Compare with instruction level parallelism
Hardware executes multiple instructions at once
Hidden from the programmer

Hard to do
Programming for performance
Load balancing
Optimizing communication and synchronization

Chapter 1 — Computer Abstractions and Technology — 42

| SPEC CPU Benchmark

Programs used to measure performance
Supposedly typical of actual workload

Standard Performance Evaluation Corp (SPEC)
Develops benchmarks for CPU, I/O, Web, ...

SPEC CPU2006

Elapsed time to execute a selection of programs
Negligible /O, so focuses on CPU performance

Normalize relative to reference machine

Summarize as geometric mean of performance ratios
CINT2006 (integer) and CFP2006 (floating-point)

”\/H Execution time ratio,

i=1

Chapter 1 — Computer Abstractions and Technology — 43

CINT2006 for Intel Core i7 920

<
A

Instruction

count x 10°

Clock cycle time
(seconds x 10-9)

Execution
Time
(seconds)

Reference
Time
(seconds)

SPECratio

Interpreted string processing 2252 0.60 0.376 508 9770 19.2
Block-sorting bZIp2 2390 0.70 0.376 629 9650 15.4
compression

GNU C compiler gce 794 1.20 0.376 358 8050 225
Combinatorial optimization mcf 221 2.66 0.376 221 9120 41.2
Go game (Al) go 1274 1.10 0.376 527 10490 19.9
Search gene sequence hmmer 2616 0.60 0.376 590 9330 15.8
Chess game (Al) sjeng 1948 0.80 0.376 586 12100 20.7
Quantum computer libquantum 659 0.44 0.376 109 20720 190.0
simulation

Video compression h264avc 3793 0.50 0.376 713 22130 31.0
Discrete event omnetpp 367 2.10 0.376 290 6250 21.5
simulation library

Games/path finding astar 1250 1.00 0.376 470 7020 14.9
XML parsing xalanchmk 1045 0.70 0.376 275 6900 25.1
Geometric mean - - - - - - 25.7

M<

MORGAN KAUFMANN

Chapter 1 — Computer Abstractions and Technology — 44

SPEC Power Benchmark

Power consumption of server at different
workload levels

Performance: ssj_ops/sec

Power: Watts (Joules/sec)

10 10
Overall ssj_ops per Watt = (Z ssj_opsij / (Z powerij
i=0 i=0

Chapter 1 — Computer Abstractions and Technology — 45

SPECpower_ssj2008 for Xeon X5650

—

Performance Average Power
Target Load % (ss)_ops) (Watts)

100% 865,618 258

0P 786,688 242

80% 698,051 224

70% 607,826 204

60% 521,391 185

50% 436,757 170

40% 345,919 157

30% 262,071 146

20% 176,061 135

10% 86,784 121

0% 0 80

Overall Sum 4,787,166 1,922
3.ssj_ops/Xpower = 2,490

Chapter 1 — Computer Abstractions and Technology — 46

Pitfall: Amdahl’s Law

Improving an aspect of a computer and
expecting a proportional improvement in
overall performance

T _ Taffected 4+ T

i d . ffi d
mPoved improvement factor “"%°

Example: multiply accounts for 80s/100s

How much improvement in multiply performance to
get 5x overall?

20 = 80 +20 Can'’t be done!

n
Corollary: make the common case fast

Chapter 1 — Computer Abstractions and Technology — 47

Fallacy: Low Power at Idle

Look back at i7 power benchmark
At 100% load: 258W
At 50% load: 170W (66%)
At 10% load: 121W (47%)

Google data center

Mostly operates at 10% — 50% load
At 100% load less than 1% of the time

Consider designing processors to make
power proportional to load

Chapter 1 — Computer Abstractions and Technology — 48

Pitfall: MIPS as a Performance Metric

MIPS: Millions of Instructions Per Second

Doesn’t account for

Differences in ISAs between computers
Differences in complexity between instructions

Instruction count

MIPS = —— :
Execution time x10
B Instruction count _ Clock rate
~ Instruction count><CPI><106 ~ CPIx10°
Clock rate

CPI varies between programs on a given CPU

Chapter 1 — Computer Abstractions and Technology — 49

| Concluding Remarks

Cost/performance is improving
Due to underlying technology development

Hierarchical layers of abstraction
In both hardware and software
Instruction set architecture
The hardware/software interface

Execution time: the best performance
measure

Power is a limiting factor
Use parallelism to improve performance

A \\, Chapter 1 — Computer Abstractions and Technology — 50

