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Course Staff

Instructor:
n Amir Ashouri (aashouri@eecs.yorku.ca) 
n Office Hours:  Wednesdays (will be announced)
n https://wiki.eecs.yorku.ca/course_archive/2019-20/F/2021E

n TAs: (will be announced)
n Main point of contact for your course labs

n Lab Hours:
LAB 01 (Mondays) 19:00-22:00 (YK LAS 1006)
LAB 02 (Tuesdays) 19:00-22:00 (YK LAS 1006)

mailto:aashouri@eecs.yorku.ca
https://wiki.eecs.yorku.ca/course_archive/2019-20/F/2021E


Course Textbook

n Required Textbook: 

n “Computer Organization and Design 
RISC-V Edition: The Hardware 
Software Interface”

n (The Morgan Kaufmann Series in 
Computer Architecture and Design)

n David A. Patterson & John L. Hennessy 
1st edition.



Tentative Schedule
Date Lecture Content Labs

1 Sep 9 to 11 Chapter 1, Chapter 2 (2.1 - 2.4)

2
Sep 9 to 11 Chapter 2 (2.5 - 2.7) 

Sep 16 to 20 Chapter 2 (2.8) 
Lab 1

3 Sep 23 to 27 Chapter 2 (2.9 - 2.11) Lab 2

4 Sep 30 to Oct 4 Chapter 2 Lab 3

5
Oct 7 to Oct 11 Chapter 3

Lab 4 

6 Oct 14 to Oct 18 Fall Reading Week - NO CLASSES

7
Oct 21 to Oct 25 Chapter 3 MidTerm

8 Oct 28 to Nov 1 Chapter 3 Lab 5

9
Nov 4 to Nov 1 Chapter 3

Lab 6

10 Oct 28 to Nov 1 Chapter 3 Lab 7

11
Oct 28 to Nov 1 Chapter 4

Lab 8 

12
Apr 1 to Apr 5 Chapter 4

13 Apr 8 to Apr 12 Chapter 4



Prerequisites
n General Prerequisite

n Basic Understanding of Programing

n Labs (@ LAS  1006)
n We will use York’s inhouse RISK-V simulator 

for our lab assignments



RISK-V Simulator (1/2)



RISK-V Simulator (2/2)



Grade Composition

nLab 30%
nMidterm 30%
nFinal 40%



EECS2021E Course Description
n Features RISC-V, the first such 

architecture designed to be used in 
modern computing environments, such as 
cloud computing, mobile devices, and 
other embedded systems

n Includes relevant examples, exercises, 
and material highlighting the emergence of 
mobile computing and the cloud
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What You Will Learn
n How programs are translated into the 

machine language
n And how the hardware executes them

n The hardware/software interface
n What determines program performance

n And how it can be improved
n How hardware designers improve 

performance
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The Computer Revolution
n Progress in computer technology

n Underpinned by Moore’s Law 
n Makes novel applications feasible

n Computers in automobiles
n Cell phones
n Human genome project
n World Wide Web
n Search Engines

n Computers are pervasive

§1.1 Introduction



Classes of Computers
n Supercomputers

n High-end scientific and engineering 
calculations

n Highest capability but represent a small 
fraction of the overall computer market

n Embedded computers
n Hidden as components of systems
n Stringent power/performance/cost constraints
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The PostPC Era



The PostPC Era
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n Personal Mobile Device (PMD)
n Battery operated
n Connects to the Internet
n Hundreds of dollars
n Smart phones, tablets, electronic glasses

n Cloud computing
n Warehouse Scale Computers (WSC)
n Software as a Service (SaaS)
n Portion of software run on a PMD and a 

portion run in the Cloud
n Amazon and Google
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Understanding Performance
n Algorithm

n Determines number of operations executed
n Programming language, compiler, architecture

n Determine number of machine instructions executed 
per operation

n Processor and memory system
n Determine how fast instructions are executed

n I/O system (including OS)
n Determines how fast I/O operations are executed



Eight Great Ideas
n Design for Moore’s Law

n Use abstraction to simplify design

n Make the common case fast

n Performance via parallelism

n Performance via pipelining

n Performance via prediction

n Hierarchy of memories

n Dependability via redundancy
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§1.2 Eight G
reat Ideas in C

om
puter Architecture
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Below Your Program
n Application software

n Written in high-level language

n System software

n Compiler: translates HLL code to 

machine code

n Operating System: service code

n Handling input/output

n Managing memory and storage

n Scheduling tasks & sharing resources

n Hardware

n Processor, memory, I/O controllers

§
1
.3

 B
e
lo

w
 Y

o
u
r P

ro
g
ra

m



Chapter 1 — Computer Abstractions and Technology — 18

Levels of Program Code
n High-level language

n Level of abstraction closer 
to problem domain

n Provides for productivity 
and portability 

n Assembly language
n Textual representation of 

instructions
n Hardware representation

n Binary digits (bits)
n Encoded instructions and 

data
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Components of a Computer
n Same components for

all kinds of computer
n Desktop, server,

embedded
n Input/output includes

n User-interface devices
n Display, keyboard, mouse

n Storage devices
n Hard disk, CD/DVD, flash

n Network adapters
n For communicating with 

other computers

§1.4 U
nder the C

overs

The BIG Picture
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Inside the Processor (CPU)
n Datapath: performs operations on data
n Control: sequences datapath, memory, ...
n Cache memory

n Small fast SRAM memory for immediate 
access to data
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Abstractions

n Abstraction helps us deal with complexity
n Hide lower-level detail

n Instruction set architecture (ISA)
n The hardware/software interface

n Application binary interface
n The ISA plus system software interface

n Implementation
n The details underlying and interface

The BIG Picture
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Technology Trends
n Electronics 

technology 
continues to evolve
n Increased capacity 

and performance
n Reduced cost

Year Technology Relative performance/cost
1951 Vacuum tube 1
1965 Transistor 35
1975 Integrated circuit (IC) 900
1995 Very large scale IC (VLSI) 2,400,000
2013 Ultra large scale IC 250,000,000,000

DRAM capacity

§1.5 Technologies for Building Processors and M
em

ory



Semiconductor Technology
n Silicon atoms:  semiconductor
n Add materials to transform properties:

n Conductors  N or P.
n Switch Combine them to make switches.
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Manufacturing ICs

n Yield: proportion of working dies per wafer
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Intel Core i7 Wafer

n 300mm wafer, 280 chips, 32nm technology
n Each chip is 20.7 x 10.5 mm
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Integrated Circuit Cost

n Nonlinear relation to area and defect rate
n Wafer cost and area are fixed
n Defect rate determined by manufacturing process
n Die area determined by architecture and circuit design

2area/2)) Diearea per (Defects(1
1Yield

area Diearea Wafer waferper Dies

Yield waferper Dies
 waferper Costdie per Cost
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Defining Performance
n Which airplane has the best performance?

0 100 200 300 400 500

Douglas
DC-8-50

BAC/Sud
Concorde

Boeing 747

Boeing 777

Passenger Capacity

0 2000 4000 6000 8000 10000

Douglas DC-
8-50

BAC/Sud
Concorde

Boeing 747

Boeing 777

Cruising Range (miles)

0 500 1000 1500

Douglas
DC-8-50

BAC/Sud
Concorde

Boeing 747

Boeing 777

Cruising Speed (mph)

0 100000 200000 300000 400000

Douglas DC-
8-50

BAC/Sud
Concorde

Boeing 747

Boeing 777

Passengers x mph

§1.6 Perform
ance
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Response Time and Throughput
n Response time

n How long it takes to do a task
n Throughput

n Total work done per unit time
n e.g., tasks/transactions/… per hour

n How are response time and throughput affected 
by
n Replacing the processor with a faster version?
n Adding more processors?

n We’ll focus on response time for now…
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Relative Performance
n Define Performance = 1/Execution Time
n “X is n time faster than Y”

n== XY

YX

time Executiontime Execution
ePerformancePerformanc

n Example: time taken to run a program
n 10s on A, 15s on B
n Execution TimeB / Execution TimeA

= 15s / 10s = 1.5
n So A is 1.5 times faster than B
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Measuring Execution Time
n Elapsed time

n Total response time, including all aspects
n Processing, I/O, OS overhead, idle time

n Determines system performance
n CPU time

n Time spent processing a given job
n Discounts I/O time, other jobs’ shares

n Comprises user CPU time and system CPU 
time

n Different programs are affected differently by 
CPU and system performance
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CPU Clocking
n Operation of digital hardware governed by a 

constant-rate clock

Clock (cycles)

Data transfer
and computation

Update state

Clock period

n Clock period: duration of a clock cycle

n e.g., 250ps = 0.25ns = 250×10–12s

n Clock frequency (rate): cycles per second

n e.g., 4.0GHz = 4000MHz = 4.0×109Hz
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CPU Time

n Performance improved by
n Reducing number of clock cycles
n Increasing clock rate
n Hardware designer must often trade off clock 

rate against cycle count

Rate Clock
Cycles Clock CPU

Time Cycle ClockCycles Clock CPUTime CPU

=

´=
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CPU Time Example
n Computer A: 2GHz clock, 10s CPU time
n Designing Computer B

n Aim for 6s CPU time on this computer
n Can do faster clock, but this causes 1.2 × clock cycles for 

the rest of the CPU design

n How fast must Computer B clock be?

4GHz
6s

1024
6s

10201.2Rate Clock

10202GHz10s

Rate ClockTime CPUCycles Clock

6s
Cycles Clock1.2

Time CPU
Cycles ClockRate Clock

99

B

9

AAA

A

B

B
B
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Instruction Count and CPI

n Instruction Count for a program
n Determined by program, ISA and compiler

n Average cycles per instruction
n Determined by CPU hardware
n If different instructions have different CPI

n Average CPI affected by instruction mix

Rate Clock
CPICount nInstructio

Time Cycle ClockCPICount nInstructioTime CPU

nInstructio per CyclesCount nInstructioCycles Clock

´
=

´´=

´=
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CPI Example
n Computer A: Cycle Time = 250ps, CPI = 2.0
n Computer B: Cycle Time = 500ps, CPI = 1.2
n Same ISA
n Which is faster, and by how much?

1.2
500psI
600psI

ATime CPU
BTime CPU

600psI500ps1.2I
BTime CycleBCPICount nInstructioBTime CPU

500psI250ps2.0I
ATime CycleACPICount nInstructioATime CPU

=
´
´

=

´=´´=

´´=

´=´´=

´´=

A is faster…

…by this much
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CPI in More Detail
n If different instruction classes take different 

numbers of cycles

å
=
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Cycles ClockCPI
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CPI Example
n Alternative compiled code sequences using 

instructions in classes A, B, C

Class A B C
CPI for class 1 2 3
IC in sequence 1 2 1 2
IC in sequence 2 4 1 1

n Sequence 1: IC = 5
n Clock Cycles

= 2×1 + 1×2 + 2×3
= 10

n Avg. CPI = 10/5 = 2.0

n Sequence 2: IC = 6
n Clock Cycles

= 4×1 + 1×2 + 1×3
= 9

n Avg. CPI = 9/6 = 1.5
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Performance Summary

n Performance depends on
n Algorithm: affects IC, possibly CPI
n Programming language: affects IC, CPI
n Compiler: affects IC, CPI
n Instruction set architecture: affects IC, CPI, Tc

The BIG Picture

cycle Clock
Seconds

nInstructio
cycles Clock

Program
nsInstructioTime CPU ´´=
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Power Trends

n In CMOS IC technology

§1.7 The Pow
er W

all

FrequencyVoltageload CapacitivePower 2 ´´=

×1000×30 5V → 1V
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Reducing Power
n Suppose a new CPU has

n 85% of capacitive load of old CPU
n 15% voltage and 15% frequency reduction

0.520.85
FVC

0.85F0.85)(V0.85C
P
P 4

old
2

oldold

old
2

oldold

old

new ==
´´

´´´´´
=

n The power wall
n We can’t reduce voltage further
n We can’t remove more heat

n How else can we improve performance?



Chapter 1 — Computer Abstractions and Technology — 41

Uniprocessor Performance
§1.8 The Sea C

hange: The Sw
itch to M

ultiprocessors

Constrained by power, instruction-level parallelism, 
memory latency
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Multiprocessors
n Multicore microprocessors

n More than one processor per chip
n Requires explicitly parallel programming

n Compare with instruction level parallelism
n Hardware executes multiple instructions at once
n Hidden from the programmer

n Hard to do
n Programming for performance
n Load balancing
n Optimizing communication and synchronization
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SPEC CPU Benchmark
n Programs used to measure performance

n Supposedly typical of actual workload
n Standard Performance Evaluation Corp (SPEC)

n Develops benchmarks for CPU, I/O, Web, …

n SPEC CPU2006
n Elapsed time to execute a selection of programs

n Negligible I/O, so focuses on CPU performance
n Normalize relative to reference machine
n Summarize as geometric mean of performance ratios

n CINT2006 (integer) and CFP2006 (floating-point)

n
n

1i
iratio time ExecutionÕ

=
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CINT2006 for Intel Core i7 920
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SPEC Power Benchmark
n Power consumption of server at different 

workload levels
n Performance: ssj_ops/sec
n Power: Watts (Joules/sec)
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SPECpower_ssj2008 for Xeon X5650
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Pitfall: Amdahl’s Law
n Improving an aspect of a computer and 

expecting a proportional improvement in 
overall performance

§1.10 F
allacies and P

itfalls

208020 +=
n

n Can’t be done!

unaffected
affected

improved T
factor timprovemen

TT +=

n Example: multiply accounts for 80s/100s
n How much improvement in multiply performance to 

get 5× overall?

n Corollary: make the common case fast
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Fallacy: Low Power at Idle
n Look back at i7 power benchmark

n At 100% load: 258W
n At 50% load: 170W (66%)
n At 10% load: 121W (47%)

n Google data center
n Mostly operates at 10% – 50% load
n At 100% load less than 1% of the time

n Consider designing processors to make 
power proportional to load
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Pitfall: MIPS as a Performance Metric
n MIPS: Millions of Instructions Per Second

n Doesn’t account for
n Differences in ISAs between computers
n Differences in complexity between instructions

6
6

6

10CPI
rate Clock

10
rate Clock

CPIcount nInstructio
count nInstructio
10time Execution

count nInstructioMIPS

´
=

´
´

=

´
=

n CPI varies between programs on a given CPU
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Concluding Remarks
n Cost/performance is improving

n Due to underlying technology development
n Hierarchical layers of abstraction

n In both hardware and software
n Instruction set architecture

n The hardware/software interface
n Execution time: the best performance 

measure
n Power is a limiting factor

n Use parallelism to improve performance

§1.11 C
oncluding R

em
arks


