
COMPUTERORGANIZATION AND DESIGN
The Hardware/Software Interface

RISC-V
Edition

EECS2021E

Computer Organization

York University

Fall 2019

Amir Ashouri

These slides are based on the slides by the authors.

The slides doesn’t include all the material covered in the lecture.

The slides will be explained, modified, and sometime corrected in

the lecture.

Course Staff

Instructor:
n Amir Ashouri (aashouri@eecs.yorku.ca)
n Office Hours: Wednesdays (will be announced)
n https://wiki.eecs.yorku.ca/course_archive/2019-20/F/2021E

n TAs: (will be announced)
n Main point of contact for your course labs

n Lab Hours:
LAB 01 (Mondays) 19:00-22:00 (YK LAS 1006)
LAB 02 (Tuesdays) 19:00-22:00 (YK LAS 1006)

mailto:aashouri@eecs.yorku.ca
https://wiki.eecs.yorku.ca/course_archive/2019-20/F/2021E

Course Textbook

n Required Textbook:

n “Computer Organization and Design
RISC-V Edition: The Hardware
Software Interface”

n (The Morgan Kaufmann Series in
Computer Architecture and Design)

n David A. Patterson & John L. Hennessy
1st edition.

Tentative Schedule
Date Lecture Content Labs

1 Sep 9 to 11 Chapter 1, Chapter 2 (2.1 - 2.4)

2
Sep 9 to 11 Chapter 2 (2.5 - 2.7)

Sep 16 to 20 Chapter 2 (2.8)
Lab 1

3 Sep 23 to 27 Chapter 2 (2.9 - 2.11) Lab 2

4 Sep 30 to Oct 4 Chapter 2 Lab 3

5
Oct 7 to Oct 11 Chapter 3

Lab 4

6 Oct 14 to Oct 18 Fall Reading Week - NO CLASSES

7
Oct 21 to Oct 25 Chapter 3 MidTerm

8 Oct 28 to Nov 1 Chapter 3 Lab 5

9
Nov 4 to Nov 1 Chapter 3

Lab 6

10 Oct 28 to Nov 1 Chapter 3 Lab 7

11
Oct 28 to Nov 1 Chapter 4

Lab 8

12
Apr 1 to Apr 5 Chapter 4

13 Apr 8 to Apr 12 Chapter 4

Prerequisites
n General Prerequisite

n Basic Understanding of Programing

n Labs (@ LAS 1006)
n We will use York’s inhouse RISK-V simulator

for our lab assignments

RISK-V Simulator (1/2)

RISK-V Simulator (2/2)

Grade Composition

nLab 30%
nMidterm 30%
nFinal 40%

EECS2021E Course Description
n Features RISC-V, the first such

architecture designed to be used in
modern computing environments, such as
cloud computing, mobile devices, and
other embedded systems

n Includes relevant examples, exercises,
and material highlighting the emergence of
mobile computing and the cloud

Chapter 1 — Computer Abstractions and Technology — 10

What You Will Learn
n How programs are translated into the

machine language
n And how the hardware executes them

n The hardware/software interface
n What determines program performance

n And how it can be improved
n How hardware designers improve

performance

Chapter 1 — Computer Abstractions and Technology — 11

The Computer Revolution
n Progress in computer technology

n Underpinned by Moore’s Law
n Makes novel applications feasible

n Computers in automobiles
n Cell phones
n Human genome project
n World Wide Web
n Search Engines

n Computers are pervasive

§1.1 Introduction

Classes of Computers
n Supercomputers

n High-end scientific and engineering
calculations

n Highest capability but represent a small
fraction of the overall computer market

n Embedded computers
n Hidden as components of systems
n Stringent power/performance/cost constraints

Chapter 1 — Computer Abstractions and Technology — 12

Chapter 1 — Computer Abstractions and Technology — 13

The PostPC Era

The PostPC Era

Chapter 1 — Computer Abstractions and Technology — 14

n Personal Mobile Device (PMD)
n Battery operated
n Connects to the Internet
n Hundreds of dollars
n Smart phones, tablets, electronic glasses

n Cloud computing
n Warehouse Scale Computers (WSC)
n Software as a Service (SaaS)
n Portion of software run on a PMD and a

portion run in the Cloud
n Amazon and Google

Chapter 1 — Computer Abstractions and Technology — 15

Understanding Performance
n Algorithm

n Determines number of operations executed
n Programming language, compiler, architecture

n Determine number of machine instructions executed
per operation

n Processor and memory system
n Determine how fast instructions are executed

n I/O system (including OS)
n Determines how fast I/O operations are executed

Eight Great Ideas
n Design for Moore’s Law

n Use abstraction to simplify design

n Make the common case fast

n Performance via parallelism

n Performance via pipelining

n Performance via prediction

n Hierarchy of memories

n Dependability via redundancy

Chapter 1 — Computer Abstractions and Technology — 16

§1.2 Eight G
reat Ideas in C

om
puter Architecture

Chapter 1 — Computer Abstractions and Technology — 17

Below Your Program
n Application software

n Written in high-level language

n System software

n Compiler: translates HLL code to

machine code

n Operating System: service code

n Handling input/output

n Managing memory and storage

n Scheduling tasks & sharing resources

n Hardware

n Processor, memory, I/O controllers

§
1
.3

 B
e
lo

w
 Y

o
u
r P

ro
g
ra

m

Chapter 1 — Computer Abstractions and Technology — 18

Levels of Program Code
n High-level language

n Level of abstraction closer
to problem domain

n Provides for productivity
and portability

n Assembly language
n Textual representation of

instructions
n Hardware representation

n Binary digits (bits)
n Encoded instructions and

data

Chapter 1 — Computer Abstractions and Technology — 19

Components of a Computer
n Same components for

all kinds of computer
n Desktop, server,

embedded
n Input/output includes

n User-interface devices
n Display, keyboard, mouse

n Storage devices
n Hard disk, CD/DVD, flash

n Network adapters
n For communicating with

other computers

§1.4 U
nder the C

overs

The BIG Picture

Chapter 1 — Computer Abstractions and Technology — 20

Inside the Processor (CPU)
n Datapath: performs operations on data
n Control: sequences datapath, memory, ...
n Cache memory

n Small fast SRAM memory for immediate
access to data

Chapter 1 — Computer Abstractions and Technology — 21

Abstractions

n Abstraction helps us deal with complexity
n Hide lower-level detail

n Instruction set architecture (ISA)
n The hardware/software interface

n Application binary interface
n The ISA plus system software interface

n Implementation
n The details underlying and interface

The BIG Picture

Chapter 1 — Computer Abstractions and Technology — 22

Technology Trends
n Electronics

technology
continues to evolve
n Increased capacity

and performance
n Reduced cost

Year Technology Relative performance/cost
1951 Vacuum tube 1
1965 Transistor 35
1975 Integrated circuit (IC) 900
1995 Very large scale IC (VLSI) 2,400,000
2013 Ultra large scale IC 250,000,000,000

DRAM capacity

§1.5 Technologies for Building Processors and M
em

ory

Semiconductor Technology
n Silicon atoms: semiconductor
n Add materials to transform properties:

n Conductors N or P.
n Switch Combine them to make switches.

Chapter 1 — Computer Abstractions and Technology — 23

Chapter 1 — Computer Abstractions and Technology — 24

Manufacturing ICs

n Yield: proportion of working dies per wafer

Chapter 1 — Computer Abstractions and Technology — 25

Intel Core i7 Wafer

n 300mm wafer, 280 chips, 32nm technology
n Each chip is 20.7 x 10.5 mm

Chapter 1 — Computer Abstractions and Technology — 26

Integrated Circuit Cost

n Nonlinear relation to area and defect rate
n Wafer cost and area are fixed
n Defect rate determined by manufacturing process
n Die area determined by architecture and circuit design

2area/2)) Diearea per (Defects(1
1Yield

area Diearea Wafer waferper Dies

Yield waferper Dies
 waferper Costdie per Cost

´+
=

»

´
=

Chapter 1 — Computer Abstractions and Technology — 27

Defining Performance
n Which airplane has the best performance?

0 100 200 300 400 500

Douglas
DC-8-50

BAC/Sud
Concorde

Boeing 747

Boeing 777

Passenger Capacity

0 2000 4000 6000 8000 10000

Douglas DC-
8-50

BAC/Sud
Concorde

Boeing 747

Boeing 777

Cruising Range (miles)

0 500 1000 1500

Douglas
DC-8-50

BAC/Sud
Concorde

Boeing 747

Boeing 777

Cruising Speed (mph)

0 100000 200000 300000 400000

Douglas DC-
8-50

BAC/Sud
Concorde

Boeing 747

Boeing 777

Passengers x mph

§1.6 Perform
ance

Chapter 1 — Computer Abstractions and Technology — 28

Response Time and Throughput
n Response time

n How long it takes to do a task
n Throughput

n Total work done per unit time
n e.g., tasks/transactions/… per hour

n How are response time and throughput affected
by
n Replacing the processor with a faster version?
n Adding more processors?

n We’ll focus on response time for now…

Chapter 1 — Computer Abstractions and Technology — 29

Relative Performance
n Define Performance = 1/Execution Time
n “X is n time faster than Y”

n== XY

YX

time Executiontime Execution
ePerformancePerformanc

n Example: time taken to run a program
n 10s on A, 15s on B
n Execution TimeB / Execution TimeA

= 15s / 10s = 1.5
n So A is 1.5 times faster than B

Chapter 1 — Computer Abstractions and Technology — 30

Measuring Execution Time
n Elapsed time

n Total response time, including all aspects
n Processing, I/O, OS overhead, idle time

n Determines system performance
n CPU time

n Time spent processing a given job
n Discounts I/O time, other jobs’ shares

n Comprises user CPU time and system CPU
time

n Different programs are affected differently by
CPU and system performance

Chapter 1 — Computer Abstractions and Technology — 31

CPU Clocking
n Operation of digital hardware governed by a

constant-rate clock

Clock (cycles)

Data transfer
and computation

Update state

Clock period

n Clock period: duration of a clock cycle

n e.g., 250ps = 0.25ns = 250×10–12s

n Clock frequency (rate): cycles per second

n e.g., 4.0GHz = 4000MHz = 4.0×109Hz

Chapter 1 — Computer Abstractions and Technology — 32

CPU Time

n Performance improved by
n Reducing number of clock cycles
n Increasing clock rate
n Hardware designer must often trade off clock

rate against cycle count

Rate Clock
Cycles Clock CPU

Time Cycle ClockCycles Clock CPUTime CPU

=

´=

Chapter 1 — Computer Abstractions and Technology — 33

CPU Time Example
n Computer A: 2GHz clock, 10s CPU time
n Designing Computer B

n Aim for 6s CPU time on this computer
n Can do faster clock, but this causes 1.2 × clock cycles for

the rest of the CPU design

n How fast must Computer B clock be?

4GHz
6s

1024
6s

10201.2Rate Clock

10202GHz10s

Rate ClockTime CPUCycles Clock

6s
Cycles Clock1.2

Time CPU
Cycles ClockRate Clock

99

B

9

AAA

A

B

B
B

=
´

=
´´

=

´=´=

´=

´
==

Chapter 1 — Computer Abstractions and Technology — 34

Instruction Count and CPI

n Instruction Count for a program
n Determined by program, ISA and compiler

n Average cycles per instruction
n Determined by CPU hardware
n If different instructions have different CPI

n Average CPI affected by instruction mix

Rate Clock
CPICount nInstructio

Time Cycle ClockCPICount nInstructioTime CPU

nInstructio per CyclesCount nInstructioCycles Clock

´
=

´´=

´=

Chapter 1 — Computer Abstractions and Technology — 35

CPI Example
n Computer A: Cycle Time = 250ps, CPI = 2.0
n Computer B: Cycle Time = 500ps, CPI = 1.2
n Same ISA
n Which is faster, and by how much?

1.2
500psI
600psI

ATime CPU
BTime CPU

600psI500ps1.2I
BTime CycleBCPICount nInstructioBTime CPU

500psI250ps2.0I
ATime CycleACPICount nInstructioATime CPU

=
´
´

=

´=´´=

´´=

´=´´=

´´=

A is faster…

…by this much

Chapter 1 — Computer Abstractions and Technology — 36

CPI in More Detail
n If different instruction classes take different

numbers of cycles

å
=

´=
n

1i
ii)Count nInstructio(CPICycles Clock

n Weighted average CPI

å
=

÷
ø
ö

ç
è
æ ´==

n

1i

i
i Count nInstructio

Count nInstructioCPI
Count nInstructio

Cycles ClockCPI

Relative frequency

Chapter 1 — Computer Abstractions and Technology — 37

CPI Example
n Alternative compiled code sequences using

instructions in classes A, B, C

Class A B C
CPI for class 1 2 3
IC in sequence 1 2 1 2
IC in sequence 2 4 1 1

n Sequence 1: IC = 5
n Clock Cycles

= 2×1 + 1×2 + 2×3
= 10

n Avg. CPI = 10/5 = 2.0

n Sequence 2: IC = 6
n Clock Cycles

= 4×1 + 1×2 + 1×3
= 9

n Avg. CPI = 9/6 = 1.5

Chapter 1 — Computer Abstractions and Technology — 38

Performance Summary

n Performance depends on
n Algorithm: affects IC, possibly CPI
n Programming language: affects IC, CPI
n Compiler: affects IC, CPI
n Instruction set architecture: affects IC, CPI, Tc

The BIG Picture

cycle Clock
Seconds

nInstructio
cycles Clock

Program
nsInstructioTime CPU ´´=

Chapter 1 — Computer Abstractions and Technology — 39

Power Trends

n In CMOS IC technology

§1.7 The Pow
er W

all

FrequencyVoltageload CapacitivePower 2 ´´=

×1000×30 5V → 1V

Chapter 1 — Computer Abstractions and Technology — 40

Reducing Power
n Suppose a new CPU has

n 85% of capacitive load of old CPU
n 15% voltage and 15% frequency reduction

0.520.85
FVC

0.85F0.85)(V0.85C
P
P 4

old
2

oldold

old
2

oldold

old

new ==
´´

´´´´´
=

n The power wall
n We can’t reduce voltage further
n We can’t remove more heat

n How else can we improve performance?

Chapter 1 — Computer Abstractions and Technology — 41

Uniprocessor Performance
§1.8 The Sea C

hange: The Sw
itch to M

ultiprocessors

Constrained by power, instruction-level parallelism,
memory latency

Chapter 1 — Computer Abstractions and Technology — 42

Multiprocessors
n Multicore microprocessors

n More than one processor per chip
n Requires explicitly parallel programming

n Compare with instruction level parallelism
n Hardware executes multiple instructions at once
n Hidden from the programmer

n Hard to do
n Programming for performance
n Load balancing
n Optimizing communication and synchronization

Chapter 1 — Computer Abstractions and Technology — 43

SPEC CPU Benchmark
n Programs used to measure performance

n Supposedly typical of actual workload
n Standard Performance Evaluation Corp (SPEC)

n Develops benchmarks for CPU, I/O, Web, …

n SPEC CPU2006
n Elapsed time to execute a selection of programs

n Negligible I/O, so focuses on CPU performance
n Normalize relative to reference machine
n Summarize as geometric mean of performance ratios

n CINT2006 (integer) and CFP2006 (floating-point)

n
n

1i
iratio time ExecutionÕ

=

Chapter 1 — Computer Abstractions and Technology — 44

CINT2006 for Intel Core i7 920

Chapter 1 — Computer Abstractions and Technology — 45

SPEC Power Benchmark
n Power consumption of server at different

workload levels
n Performance: ssj_ops/sec
n Power: Watts (Joules/sec)

÷
ø

ö
ç
è

æ
÷
ø

ö
ç
è

æ
= åå

==

10

0i
i

10

0i
i powerssj_ops Wattper ssj_ops Overall

Chapter 1 — Computer Abstractions and Technology — 46

SPECpower_ssj2008 for Xeon X5650

Chapter 1 — Computer Abstractions and Technology — 47

Pitfall: Amdahl’s Law
n Improving an aspect of a computer and

expecting a proportional improvement in
overall performance

§1.10 F
allacies and P

itfalls

208020 +=
n

n Can’t be done!

unaffected
affected

improved T
factor timprovemen

TT +=

n Example: multiply accounts for 80s/100s
n How much improvement in multiply performance to

get 5× overall?

n Corollary: make the common case fast

Chapter 1 — Computer Abstractions and Technology — 48

Fallacy: Low Power at Idle
n Look back at i7 power benchmark

n At 100% load: 258W
n At 50% load: 170W (66%)
n At 10% load: 121W (47%)

n Google data center
n Mostly operates at 10% – 50% load
n At 100% load less than 1% of the time

n Consider designing processors to make
power proportional to load

Chapter 1 — Computer Abstractions and Technology — 49

Pitfall: MIPS as a Performance Metric
n MIPS: Millions of Instructions Per Second

n Doesn’t account for
n Differences in ISAs between computers
n Differences in complexity between instructions

6
6

6

10CPI
rate Clock

10
rate Clock

CPIcount nInstructio
count nInstructio
10time Execution

count nInstructioMIPS

´
=

´
´

=

´
=

n CPI varies between programs on a given CPU

Chapter 1 — Computer Abstractions and Technology — 50

Concluding Remarks
n Cost/performance is improving

n Due to underlying technology development
n Hierarchical layers of abstraction

n In both hardware and software
n Instruction set architecture

n The hardware/software interface
n Execution time: the best performance

measure
n Power is a limiting factor

n Use parallelism to improve performance

§1.11 C
oncluding R

em
arks

