Design Theory

1. Keys \& FDs
2. The Normal Forms
3. Reasoning with FDs
4. Normalization

Table of Contents

Design Theory 0
Table of Contents 0/1
Parke Godfrey 0/2
Acknowledgments 0/3

1. Keys \& FDs 1
Notation: functionally determines 1/1
Notation: keys \& superkeys 1/2
Notation: functional dependencies 1/3
Canonical form 1/4
Chnrthond for 듬 $1 / Б$

Parke Godfrey

2016-10-05 initial [v1] 2016-10-17 [v2]

Acknowledgments

Thanks

- to Jeffrey D. Ullman for initial slidedeck
- to Jarek Szlichta for the slidedeck with significant refinements on which this is derived

1. Keys \& FDs

Notation: functionally determines

Let \mathcal{R} be the set of attr's of table \mathbf{R}.
If subset of attr's $\mathcal{K} \subseteq \mathcal{R}$ is "the" key of \mathbf{R}, then there is at most one tuple with given values for the attr's in \mathcal{K} in (any instance of) table \mathbf{R}.

Another way to think of this is that, given values for \mathcal{K}, there is a distinct value for each attr. in $\mathcal{R}-\mathcal{K}$.

In this case, we say that \mathcal{K} functionally determines \mathcal{R}.
We denote this by

$$
\mathcal{K} \mapsto \mathcal{R}
$$

Notation: keys \& superkeys

Given \mathcal{R} - the set of all attr's of table \mathbf{R} - we call any subset $\mathcal{S} \subseteq \mathcal{R}$ such that $\mathcal{S} \mapsto \mathcal{R}$ a superkey of table \mathbf{R}.

If no proper subset of a superkey \mathcal{K} for \mathbf{R} is also a superkey for \mathbf{R} - that is, $\neg \exists \mathcal{J} \subset \mathcal{K} . \mathcal{J} \mapsto \mathcal{R}$ - then we call \mathcal{K} a key of table \mathbf{R}.

Notation: functional dependencies

We might happen to know that, in some domain, $\mathcal{X} \mapsto \mathcal{Y}$ holds, where $\mathcal{X} \cup \mathcal{Y} \subset \mathcal{R}$, but $\mathcal{X} \ngtr \mathcal{R}$; that is, $\exists \mathrm{A} \in \mathcal{R}-(\mathcal{X} \cup \mathcal{Y}) . \mathcal{X} \nLeftarrow\{\mathrm{A}\}$.

Thus, \mathcal{X} is not a superkey of \mathbf{R} ! But such things as $\mathcal{X} \mapsto \mathcal{Y}$ will be important.

We will call $\mathcal{X} \mapsto \mathcal{Y}$ a functional dependency ("FD").

Note. Call an FD a superkey FD if its left-hand side is a superkey; call it a key FD if its LHS is a key.

Not all FDs are superkey FDs!

Canonical form

splitting right-hand sides

Consider $\mathcal{X} \mapsto \mathcal{Y}$ where $\mathcal{Y}=\left\{\mathrm{Y}_{0}, \ldots, \mathrm{Y}_{\mathrm{k}-1}\right\}$. Then that FD is equivalent to the set of FDs

$$
\forall i \in\{0, \ldots, k-1\} . \mathcal{X} \mapsto\left\{\mathrm{Y}_{\mathrm{i}}\right\}
$$

We generally express FD's with singleton right-hand sides.

There is no splitting rule for left-hand sides! That would be incorrect.

Shorthand for FDs

As shorthand, instead of using "\{"'s and "\}"'s everywhere, when we are using single letters for attr's, we just munge them together.
E.g., we write $\{\mathrm{A}, \mathrm{B}, \mathrm{C}\} \mapsto\{\mathrm{D}, \mathrm{E}\}$ as $\mathrm{ABC} \mapsto \mathrm{DE}$.

Example: Drinker \& FDs

Drinker(name, address, beer, manf, favBeer)
Here, we mean the drinker (name) likes that beer, and it is manufactured by manf.

Reasonable FDs to assert:

- name \mapsto addr, favBeer

Equivalent to

- name \mapsto addr
- name \mapsto favBeer
- beer \mapsto manf

Example: key of Drinker

\{name, beer\} is a key of Drinker because neither \{name \} nor $\{$ beer $\}$ is a superkey.

- name \ngtr manf
- beer \nLeftarrow addr

In this case, there are no other keys.
But there are lots of superkeys! Namely, any superset of $\{$ name, beer $\}$.

Visualizing

We sometimes draw out FDs to see what is going on.

Where do FDs come from?

- The designer presribes them by naming keys.
- From real-world "constraints" that the designer knows and prescribes.
E.g., "no two classes can meet in the same room at the same time"

$$
\text { hour, room } \mapsto \text { class }
$$

[^0]
Problem: non-key FDs

Non-key FDs are problematic, because they allow for the potential of anomalies.
our game: Design to have only superkey FDs.

Anomalies / redundancies

- update anomaly: one occurrence of a fact is changed, but not all occurrences are.
- deletion anomaly: a valid fact is lost when a tuple is deleted.

The goal of relational schema design is to avoid such anomalies and redundancy.

Non-key FDs cause these problems because these violate our "single source of truth" mandate.

Example: anomalies

- deletion anomaly.
- No drinker likes the beer Bud.
- Thus, no tuple appears in Drinker with beer = 'Bud'.
- Then we do not have the information that beer = 'Bud' and manf = 'Anheuser Busch'.
- insertion anomaly.
- Say there is a tuple in Drinker with beer = 'Bud' and manf = 'Anheuser Busch' (with, say, name = 'Jeff'). correct
- Someone accidentally adds another tuple later with beer = 'Bud' and manf = 'Labatt' (with, say, name = 'Franck'). incorrect
- Note. Our key of \{name, beer\} has not been violated.
- Who manufactures Bud?

2. The Normal Forms

First pass

What the normal forms do

1. 1NF: Every table (relation) has a key prescribed.
(Trivial to achieve. Why?)
2. 2NF: Every table is in 1NF and no table has a partialkey dependency.
3. 3NF: Every table is in 2NF and no table has a transitive dependency.
4. BCNF: Every table is in 3NF and no table has a back dependency.

If we can achieve BCNF, we should be good to go!

Partial key dependencies ($\neg \mathbf{2 N F}$)

Consider Enrol(s\#, c\#, grade, student_name) (SCGN).

- "The" key FD is clearly $\mathrm{SC} \mapsto \mathrm{GN}$.
- We also have the non-key FD $\mathrm{S} \mapsto \mathrm{N}$.
- We call this a partial-key dependency because its LHS is a proper subset of a key. E.g., $\{S\} \subset\{S, C\}$.

Transitive dependencies (\neg 3NF)

Consider Emp(emp\#, name, level, wage) (ENLW).

- "The" key FD is E \mapsto NLW.
- We also have the non-key FD L \mapsto W.
- We call this a transitive dependency because its LHS and RHS are not subsets of any keys.
E.g., $\{\mathrm{L}\} \nsubseteq\{\mathrm{E}\}$ and $\{\mathrm{W}\} \nsubseteq\{\mathrm{E}\}$.

Back dependencies (\neg BCNF)

Consider Enrol $\mathbf{2}_{2}$ (st\#, fac\#, class\#, grade) (SFCG).

- "The" key FD is $\mathrm{SF} \mapsto \mathrm{CG}$.
- We also have the non-key FD C $\mapsto \mathrm{F}$.
- We call this a back dependency because its LHS seems to not be a subset of a key but its RHS is part of a key.
E.g., $\{\mathrm{C}\} \subseteq\{\mathrm{SF}\}$.

Second pass

Formally defining things
But your "definitions" above seem fuzzy!
"Seems to not be a subset of a key?!"
The examples above give you a feel for what is going on.
Why are they not formal definitions?
We did not say what the situation is when

- the LHS or RHS of a non-key FD overlaps with a key, or
- there is more than one key.

What were the keys in Enrol $_{2}$?

Well, \{S, F\}. That was stated!
But also \{S, C\}!
But then... wouldn't $\mathrm{C} \mapsto \mathrm{F}$ be a partial-key dependency?!

Formal definitions

- 1NF: Each attr. is an elementary type. A key is defined for each relation.
- 2NF: Whenever $\mathcal{X} \mapsto$ A holds in \mathbf{R} and $\mathrm{A} \notin \mathcal{X}$,
- A is prime, or
- \mathcal{X} is not a proper subset of any key of \mathbf{R}.
- 3NF: Whenever $\mathcal{X} \mapsto$ A holds in \mathbf{R} and $\mathrm{A} \notin \mathcal{X}$,
- A is prime, or
- \mathcal{X} is a superkey of \mathbf{R}.
- BCNF: Whenever $\mathcal{X} \mapsto \mathrm{A}$ holds in \mathbf{R} and $\mathrm{A} \notin \mathcal{X}$,
- \mathcal{X} is a superkey of \mathbf{R}.

An attr. is prime if it is part of any key of \mathbf{R}. E.g., name $\in\{$ name, beer $\}$ in Drinker.

3. Reasoning with FDs

Some FDs that hold for a relation may be implicit.
That is, an implicit FD may logically follow from the set of known FDs.

We will need to infer the implicit ones. For example, we need to know a relation's keys to test whether it is in BCNF.

Is this hard? Well... yes and no.

Why might it be hard?

How many different keys can a single-key rel'n have?

Exponential!
Consider a rel'n with n attr's. Then, there are 2^{n} possible different keys.

How many possible keys of length k ?

$$
\binom{n}{k}
$$

Why might it be hard?

How many keys might a rel'n have simultaneously?
There can be lots of FDs! And lots of key FDs too.
Consider I know that $\mathrm{A}_{1} \mapsto \mathrm{~A}_{2}, \mathrm{~A}_{2} \mapsto \mathrm{~A}_{1}, \ldots, \mathrm{Z}_{1} \mapsto \mathrm{Z}_{2}$, $\mathrm{Z}_{2} \mapsto \mathrm{Z}_{1}$.
There are 2^{26} keys!
There can be an exponential number of key FDs.

What is easy?

From a set of attr's \mathcal{X}, I can find the closure, \mathcal{X}^{+}, of that set of attr's easily.
(In fact, there is a linear runtime algorithm known for this!)

FD axiomatization

A sound and complete set of axioms for FDs is as follows.

1. Reflexivity. $\mathcal{X} \mapsto \mathcal{Y}$ if $\mathcal{Y} \subseteq \mathcal{X}$.

- These are called trivial FDs.

2. Augmentation. If $\mathcal{X} \mapsto \mathcal{Y}$ then $\mathcal{X} \cup \mathcal{Z} \mapsto \mathcal{Y} \cup \mathcal{Z}$ for any \mathcal{Z}.
3. Transitivity. If $\mathcal{X} \mapsto \mathcal{Y}$ and $\mathcal{Y} \mapsto \mathcal{Z}$ then $\mathcal{X} \mapsto \mathcal{Z}$.

Computing \square^{+}

Computing the closure of a set of attr's \mathcal{X} is just the fixpoint with respect to transitivity then.

Let $\mathcal{X}_{0}=\mathcal{X}$.
Define $\mathcal{X}_{i+1}=\mathcal{X}_{i} \cup \bigcup_{\mathcal{F}_{i}} \mathcal{Z}$.
where $\mathcal{F}_{i}=\left\{\mathcal{Y} \mapsto \mathcal{Z} \mid \mathcal{Y} \subseteq \mathcal{X}_{i}\right\}$.
Then $\mathcal{X}^{+}=\mathcal{X}_{i}$ for which $\boldsymbol{F}_{i}=\{ \}$.

Ever need to find all keys of a rel'n?

Unfortunately, we might have to.
For instance, to check a schema for meeting normal form.

See Exercise \#9 from Exercises for Study (and with answers).

4. Normalization

Goal: A "correct" schema in BCNF.
Or in 3NF, if that is not possible.
So...how to achieve BCNF (or 3NF)?

Two approaches

decomposition: a top-down approach

- Start with our schema and refine it.
synthesis: a bottom-up approach
- Start with the prescribed FDs and create a schema from them.

Decomposition

Method Sketch

1. Find a problematic FD; i.e., one that breaks BCNF.
2. Make the problematic FD "go away". How?

- Let the FD be key of its own rel'n.
- That is, split the non-BCNF rel'n into two rel'ns in a lossless way.

3. Repeat until no more problematic FDs!

See Exercise \#16 from Exercises for Study (and with answers).

Two goals

1. Iossless decomposition

- We must ensure that the final schema can "reproduce" our original schema. That nothing is lost.

2. dependency preservation

- All of our FDs are ensured by the final schema (by rel'n's keys).

Lossless join decomposition

Say we have a rel'n schema \mathbf{R} of ABCDE and an FD $B \mapsto E$ that violates BCNF for \mathbf{R}.

We can break \mathbf{R} into two rel'ns:

1. BE

- This is just the "FD" itself!
- Its key can be B, the LHS of the FD.

2. ABCD

- And the rest of what is left over from \mathbf{R}
- ...repeating the LHS of the FD!

This will server as a foreign key from 2) to 1).

- The key can be whatever was key for \mathbf{R}.

Lossless join decomposition (general)

Given \mathbf{R} and an $\mathrm{FD} \mathcal{X} \mapsto \mathcal{Y}$ violating \mathbf{R} - assume that $\mathcal{X} \mapsto \mathcal{Y}$ is non-trivial, that $\mathcal{X} \cap \mathcal{Y}=\{ \}-$ replace \mathbf{R} by two rel'ns:

1. $\mathcal{X} \cup \mathcal{Y}$
2. $\mathcal{R}-\mathcal{Y}$

What goes wrong if not lossless?

We cannot reproduce the "database" with respect to the original schema from our decomposed schema.

That is, if we "joined" our two decomposed rel'ns, we might not recover the original rel'n.

Example of a bad decomposition

Consider ABC with no FDS and I break it into AB and BC
. Let our table be

A	B	C
1	2	3
4	2	5

Example of a bad decomposition (2)

This decomposes into

\mathbf{A}	\mathbf{B}			
1	2			
4	2	\quad and \quad	\mathbf{B}	\mathbf{C}
:---:	:---:			
2	3			
2	5			

Example of a bad decomposition (3)

But "joining" these back together (AB $\downarrow \mathrm{BC}$) does not give us the same thing that was in \mathbf{R} !

A	B	C
1	2	3
1	2	5
4	2	3
4	2	5

The extra resulting tuples here from the "lossy" join are called spurious.

But what about dependency preservation?

 good news- Lossless join decomposition steps can always get us eventually to BCNF!

bad news

- the resulting schema may not be dependency preserving.

See Exercise \#17 from Exercises for Study (and with answers).

Decomposition

Revised Method

1. Find a problematic FD for a rel'n, decompose the rel'n losslessly with respect to the FD.
2. Repeat until no more problematic FDs!
3. Add back any FDs that are not covered in the resulting schema as rel'ns.

Can we always have BCNF?

The method above often works, but does not always.
What can go wrong? Some of the non-covered FDs that we add back in as rel'ns may not be in BCNF!

- Well, we could decompose an added, non-BCNF rel'n...
- But then the corresponding FD is not covered again!
- Stuck.

The result does arrive always to a 3NF, dependency preserving schema!

Is there just one lossless decomposition?
Of course not! The decomposition depends on the order of the decomposition steps we apply.

There may be an exponential number of lossless-join decompositions.

One of them might be BCNF and dependency preserving (after we add back in the non-covered)!

- But finding this one might be hard.
- And it might not even exist!

Synthesis Method

Find a minimal basis of the set of declared (explicit) FDs.

That's it!

Is polynomial!

It is polynomial to find a minimal basis!
The resulting schema is in 3NF and it is dependency preserving.

Note. There is no notion of "lossless" here; there is no "original" schema to compare against.

Finding all minimal bases, though, is exponential.

- One of them might be in BCNF too!
- But this is NP-complete to find.

Minimal basis

1. Throw away any FD that can be derived from the others (the remaining ones)

Repeat until no such FD remains.
2. Throw away any attr. on the LHS of an FD if the resulting FD plus the others can derive the original FD. Repeat until no such FD remains.

[^1]
[^0]: Because we may have FDs in addition to the prescribed key FDs, additional key FDs might exist.
 We may have to assert our FDs, then deduce the keys by systematic exploration!

[^1]: See Exercise \#18 from Exercises for Study (and with answers).

