

Crash Recovery

EECS-3421M: Implementation of Database Systems Winter 2018

Parke Godfrey

The ACID properties

- A tomicity: All actions in the Xact happen, or none happen.
- **C** onsistency: If each Xact is consistent, and the DB starts consistent, it ends up consistent.
- **I** solation: Execution of one Xact is isolated from that of other Xacts.
- **D** urability: If a Xact commits, its effects persist.
- The **Recovery Manager** guarantees Atomicity & Durability.

Motivation

- Atomicity:
 - Transactions may abort ("Rollback").
- Durability:
 - What if DBMS stops running? (Causes?)
- Desired Behavior after system restarts:
 - T1, T2 & T3 should be durable.
 - T4 & T5 should be aborted (effects not seen).

Assumptions

- Concurrency control is in effect.
 - Strict 2PL, in particular.
- Updates are happening "in place".
 - i.e. data is overwritten on (deleted from) the disk.
- A simple scheme to guarantee Atomicity & Durability?

- Data must be in RAM for DBMS to operate on it!
- Table of <frame#, pageid> pairs is maintained.

EECS-3421M: Implementation of Database Systems Winter 2018

Parke Godfrey

Handling the Buffer Pool

- Force every write to disk?
 - Poor response time.
 - But provides durability.
- Steal buffer-pool frames from uncommited Xacts?
 - If not, poor throughput.
 - If so, how can we ensure atomicity?

	No Steal	Steal
Force	Trivial	
No Force		Desired

More on Steal and Force

- **<u>STEAL</u>** (why enforcing Atomicity is hard)
 - *To steal frame F:* Current page in F (say P) is written to disk; some Xact holds lock on P.
 - What if the Xact with the lock on P aborts?
 - Must remember the old value of P at steal time (to support UNDOing the write to page P).
- **<u>NO FORCE</u>** (why enforcing Durability is hard)
 - What if system crashes before a modified page is written to disk?
 - Write as little as possible, in a convenient place, at commit time, to support **REDO**ing modifications.

Basic Idea: Logging

- Record REDO and UNDO information, for every update, in a *log*.
 - Sequential writes to log (put it on a separate disk).
 - Minimal info (diff) written to log, so multiple updates fit in a single log page.
- Log: An ordered list of REDO/UNDO actions
 - Log record contains:

<XID, pageID, offset, length, old data, new data>

and additional control info (which we'll see soon).

Write-Ahead Logging (WAL)

- The Write-Ahead Logging Protocol:
 - ① Must force the log record for an update <u>before</u> the corresponding data page gets to disk.
 - , Must write all log records for a Xact *before commit*.
- #1 guarantees Atomicity.
- #2 guarantees Durability.
- Exactly how is logging (and recovery!) done?
 - We'll study the ARIES algorithms.

WAL & the Log

- Each log record has a unique Log Sequence Number (LSN).
 Log records flushed to disk
 - LSNs always increasing.
- Each *data page* contains a pageLSN.
 - The LSN of the most recent *log record* for an update to that page.
- System keeps track of flushedLSN.
 - The max LSN flushed so far.
- <u>WAL</u>: *Before* a page is written,
 - pageLSN \leq flushedLSN

EECS-3421M: Implementation of Database Systems Winter 2018

Parke Godfrey

pageLSN

"Log tail"

in RAM

Log Records

LogRecord fields: prevLSN XID type pageID length update offset records before-image only after-image

Possible log record types:

- Update
- Commit
- Abort
- End (signifies end of commit or abort)
- Compensation Log Records (CLRs)
 - for UNDO actions

Other Log-Related State

- Transaction Table:
 - One entry per active Xact.
 - Contains XID, status (running/commited/aborted), and lastLSN.
- Dirty Page Table:
 - One entry per dirty page in buffer pool.
 - Contains recLSN -- the LSN of the log record which <u>first</u> caused the page to be dirty.

Normal Execution of an Xact

- Series of reads & writes, followed by commit or abort.
 - We will assume that write is atomic on disk.
 - In practice, additional details to deal with non-atomic writes.
- Strict 2PL.
- STEAL, NO-FORCE buffer management, with Write-Ahead Logging.

Checkpointing

- Periodically, the DBMS creates a <u>checkpoint</u>, in order to minimize the time taken to recover in the event of a system crash. Write to log:
 - begin_checkpoint record: Indicates when chkpt began.
 - end_checkpoint record: Contains current *Xact table* and *dirty page table*. This is a `fuzzy checkpoint':
 - Other Xacts continue to run; so these tables accurate only as of the time of the begin_checkpoint record.
 - No attempt to force dirty pages to disk; effectiveness of checkpoint limited by oldest unwritten change to a dirty page. (So it's a good idea to periodically flush dirty pages to disk!)
 - Store LSN of chkpt record in a safe place (*master* record).

The Big Picture: What's Stored Where

Simple Transaction Abort

- For now, consider an explicit abort of a Xact.
 - No crash involved.
- We want to "play back" the log in reverse order, UNDOing updates.
 - Get lastLSN of Xact from Xact table.
 - Can follow chain of log records backward via the prevLSN field.
 - Before starting UNDO, write an *Abort* log record.
 - For recovering from crash during UNDO!

- To perform UNDO, must have a lock on data!
 - No problem!
- Before restoring old value of a page, write a CLR:
 - You continue logging while you UNDO!!
 - CLR has one extra field: undonextLSN
 - Points to the next LSN to undo (i.e. the prevLSN of the record we're currently undoing).
 - CLRs *never* Undone (but they might be Redone when repeating history: guarantees Atomicity!)
- At end of UNDO, write an "end" log record. EECS-3421M: Implementation of Database Systems Winter 2018 Parke Godfrey

Transaction Commit

- Write commit record to log.
- All log records up to Xact's lastLSN are flushed.
 - Guarantees that flushedLSN ≥ lastLSN.
 - Note that log flushes are sequential, synchronous writes to disk.
 - Many log records per log page.
- Commit() returns.
- Write end record to log.

Crash Recovery: Big Picture

- Start from a checkpoint (found via master record).
- Three phases. Need to:
 - Figure out which Xacts committed since checkpoint, which failed (Analysis).
 - REDO all actions.
 - (repeat history)
 - UNDO effects of failed Xacts.

EECS-3421M: Implementation of Database Systems Winter 2018

Recovery: The Analysis Phase

- Reconstruct state at checkpoint.
 - via end_checkpoint record.
- Scan log forward from checkpoint.
 - End record: Remove Xact from Xact table.
 - Other records: Add Xact to Xact table, set lastLSN=LSN, change Xact status on commit.
 - Update record: If P not in Dirty Page Table,
 - Add P to D.P.T., set its recLSN=LSN.

Recovery: The REDO Phase

- We *repeat History* to reconstruct state at crash:
 - Reapply *all* updates (even of aborted Xacts!), redo CLRs.
- Scan forward from log rec containing smallest recLSN in D.P.T. For each CLR or update log rec LSN, REDO the action unless:
 - Affected page is not in the Dirty Page Table, or
 - Affected page is in D.P.T., but has recLSN > LSN, or
 - pageLSN (in DB) \geq LSN.
- To **REDO** an action:
 - Reapply logged action.
 - Set pageLSN to LSN. No additional logging!

Recovery: The UNDO Phase

ToUndo={ *l* | *l* a lastLSN of a "loser" Xact} **Repeat:**

- Choose largest LSN among ToUndo.
- If this LSN is a CLR and undonextLSN==NULL
 - Write an End record for this Xact.
- If this LSN is a CLR, and undonextLSN != NULL
 - Add undonextLSN to ToUndo
- Else this LSN is an update. Undo the update, write a CLR, add prevLSN to ToUndo.

Until ToUndo is empty.

Example of Recovery

Xact Table lastLSN status Dirty Page Table recLSN flushedLSN

ToUndo

EECS-3421M: *Implementation of Database Systems* Winter 2018

Example: Crash During Restart!

Xact Table lastLSN status **Dirty Page Table** recLSN flushedLSN

ToUndo

LSN LOG 00,05 🕂 begin_checkpoint, end_checkpoint $10 \div update: T1 writes P5$ 20 ____ update T2 writes P3 undonextLSN $30 \stackrel{\cdot}{\rightarrow} T1 abort$ 40,45 🕂 CLR: Undo T1 LSN 10, T1 End 50 — update: T3 writes P1 $60 \div update: T2 writes P5$ **X** CRASH, RESTART $70 \div CLR:$ Undo T2 LSN 60 80,85 🕂 CLR: Undo T3 LSN 50, T3 end X CRASH, RESTART 90 - CLR: Undo T2 LSN 20, T2 end EECS-3421M: *Implementation of Database Systems* Winter 2018 Parke Godfrey 24

Additional Crash Issues

- What happens if system crashes during Analysis? During REDO?
- How do you limit the amount of work in REDO?
 - Flush asynchronously in the background.
 - Watch "hot spots"!
- How do you limit the amount of work in UNDO?
 - Avoid long-running Xacts.

Summary of Logging/Recovery

- Recovery Manager guarantees Atomicity & Durability.
- Use WAL to allow STEAL/NO-FORCE w/o sacrificing correctness.
- LSNs identify log records; linked into backwards chains per transaction (via prevLSN).
- pageLSN allows comparison of data page and log records.

Summary, Cont.

- Checkpointing: A quick way to limit the amount of log to scan on recovery.
- Recovery works in 3 phases:
 - Analysis: Forward from checkpoint.
 - Redo: Forward from oldest recLSN.
 - Undo: Backward from end to first LSN of oldest Xact alive at crash.
- Upon Undo, write CLRs.
- Redo "repeats history": Simplifies the logic!