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DFS Timestamping

• The DFS algorithm maintains a 
monotonically increasing global clock
– discovery time d[u] and finishing time f[u]

• For every vertex u, the inequality d[u] < 
f[u] must hold
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DFS Timestamping

• Vertex u is
– white before time d[u]
– gray between time d[u] and time f[u], and
– black thereafter

• Notice the structure througout the 
algorithm. 
– gray vertices form a linear chain
– correponds to a stack of vertices that have 

not been exhaustively explored (DFS-Visit 
started but not yet finished)
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DFS Parenthesis Theorem

• Discovery and finish times have parenthesis 
structure
– represent discovery of u with left parenthesis "(u"
– represent finishin of u with right parenthesis "u)"
– history of discoveries and finishings makes a well-

formed expression (parenthesis are properly 
nested)

• Intuition for proof: any two intervals are either 
disjoint or enclosed
– Overlaping intervals would mean finishing 

ancestor, before finishing descendant or starting 
descendant without starting ancestor 
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DFS Parenthesis Theorem (2)
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DFS Edge Classification

• Tree edge (gray to white)
– encounter new vertices (white)

• Back edge (gray to gray)
– from descendant to ancestor
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DFS Edge Classification (2)

• Forward edge (gray to black) 
– from ancestor to descendant

• Cross edge (gray to black)
– remainder – between trees or subtrees



3/28/2019 EECS 3101 7

DFS Edge Classification (3)

• Tree and back edges are important
• Most algorithms do not distinguish between 

forward and cross edges
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Next:

• Application of DFS: Topological Sort
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Directed Acyclic Graphs

• A DAG is a directed graph with no cycles

• Often used to indicate precedences among 
events, i.e., event a must happen before b

• An example would be a parallel code 
execution

• Total order can be introduced using 
Topological Sorting
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DAG Theorem

• A directed graph G is acyclic if and only if a 
DFS of G yields no back edges. Proof:
– suppose there is a back edge (u,v); v is an 

ancestor of u in DFS forest. Thus, there is a path 
from v to u in G and (u,v) completes the cycle

– suppose there is a cycle c; let v be the first 
vertex in c to be discovered and u is a 
predecessor of v in c. 

• Upon discovering v the whole cycle from v to u is white
• We must visit all nodes reachable on this white path 

before return DFS-Visit(v), i.e., vertex u becomes a 
descendant of v

• Thus, (u,v) is a back edge

• Thus, we can verify a DAG using DFS!
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Topological Sort Example

• Precedence relations: an edge from x to y means 
one must be done with x before one can do y

• Intuition: can schedule task only when all of its 
subtasks have been scheduled 
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Topological Sort

• Sorting of a directed acyclic graph (DAG)
• A topological sort of a DAG is a linear ordering 

of all its vertices such that for any edge (u,v) in 
the DAG, u appears before v in the ordering

• The following algorithm topologically sorts a 
DAG

• The linked lists comprises a total ordering

Topological-Sort(G)
1) call DFS(G) to compute finishing times f[v] for each vertex v
2) as each vertex is finished, insert it onto the front of a linked list
3) return the linked list of vertices
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Topological Sort

• Running time
– depth-first search: O(V+E) time
– insert each of the |V| vertices to the front of 

the linked list: O(1) per insertion
• Thus the total running time is O(V+E) 
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Topological Sort Correctness

• Claim: for a DAG, an edge 
• When (u,v) explored, u is gray. We can 

distinguish three cases
– v = gray

⇒ (u,v) = back edge (cycle, contradiction)
– v = white

⇒ v becomes descendant of u
⇒ v will be finished before u
⇒ f[v] < f[u]

– v = black
⇒ v is already finished
⇒ f[v] < f[u]

• The definition of topological sort is satisfied

( , ) [ ] [ ]u v E f u f v∈ ⇒ >
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Next....

Shortest path problems
Single-source shortest paths in weighted graphs
– Shortest-Path Problems
– Properties of Shortest Paths, Relaxation
– Dijkstra’s Algorithm
– Bellman-Ford Algorithm
– Shortest-Paths in DAG’s
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Shortest Path

• Generalize distance to weighted setting
• Digraph G = (V,E) with weight function 

W: E → R (assigning real values to edges)
• Weight of path p = v1 → v2 → … → vk is

• Shortest path = a path of the minimum weight
• Applications

– static/dynamic network routing
– robot motion planning
– map/route generation in traffic
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Shortest path problems

• Shortest-Path problems
– Unweighted shortest-paths – BFS.  
– Single-source, single-destination: Given two 

vertices, find a shortest path between them.
– Single-source, all destinations: Find a 

shortest path from a given source (vertex s) to 
each of the vertices. The topic of this lecture.
[Solution to this problem solves the previous 
problem efficiently]. Greedy algorithm!

– All-pairs. Find shortest-paths for every pair of 
vertices. Dynamic programming algorithm.
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Optimal Substructure

• Theorem: subpaths of shortest paths 
are shortest paths

• Proof (cut and paste)
– if some subpath were not the shortest path, 

one could substitute the shorter subpath 
and create a shorter total path

Suggests that there may be a greedy algorithm
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Triangle Inequality

• Definition
– δ(u,v) ≡ weight of a shortest path from u to v

• Theorem
– δ(u,v) ≤ δ(u,x) + δ(x,v) for any x

• Proof 
– shortest path u ∈ v is no longer than any other 

path u ∈ v – in particular, the path concatenating 
the shortest path u ∈ x with the shortest path x ∈ v 
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Relaxation

• For each vertex in the graph, we maintain 
d[v], the estimate of the shortest path from s, 
initialized to ∞ at start

• Relaxing an edge (u,v) means testing 
whether we can improve the shortest path to 
v found so far by going through u

vu vu
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Relax(u,v)

Relax (u,v,w)

if d[v] > 
d[u]+w(u,v)then
d[v] ← d[u]+w(u,v)
π[v] ← u
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Dijkstra's Algorithm

• Non-negative edge weights
• Greedy, similar to Prim's algorithm for MST
• Like breadth-first search (if all weights = 1, 

one can simply use BFS)
• Use Q, priority queue keyed by d[v] (BFS 

used FIFO queue, here we use a PQ, which 
is re-organized whenever some d decreases)

• Basic idea
– maintain a set S of solved vertices
– at each step select "closest" vertex u, add it to S, 

and relax all edges from u
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Dijkstra's Algorithm: pseudocode

• Graph G, weight function w, root s

relaxing 
edges
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Dijkstra's Algorithm: example
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• Observe
– relaxation step (lines 10-11)
– setting d[v] updates Q (needs Decrease-Key)
– similar to Prim's MST algorithm

Dijkstra's Algorithm: example (2)
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Dijkstra's Algorithm: correctness

• We will prove that whenever u is added to S, 
d[u] = d(s,u), i.e., that d is minimum, and that 
equality is maintained thereafter

• Proof
– Note that ∀v, d[v] ≥ d(s,v)
– Let u be the first vertex picked such that there is a 

shorter path than d[u], i.e., that ⇒ d[u] > d(s,u)
– We will show that this assumption leads to a 

contradiction
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Dijkstra's Algorithm: correctness (2)

• Let y be the first vertex ∈ V – S on the actual 
shortest path from s to u, then it must be that 
d[y] = δ (s,y) because
– d[x] is set correctly for y's predecessor x ∈ S on 

the shortest path (by choice of u as the first vertex 
for which d is set incorrectly)

– when the algorithm inserted x into S, it relaxed the 
edge (x,y), assigning d[y] the correct value
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• But d[u] > d[y] ⇒ algorithm would have 
chosen y (from the PQ) to process next, not u
⇒ Contradiction

• Thus d[u] = δ(s,u) at time of insertion of u into 
S, and Dijkstra's algorithm is correct

Dijkstra's Algorithm: correctness (3)

[ ] ( , ) (initial assumption)
( , ) ( , ) (optimal substructure)
[ ] ( , ) (correctness of [ ])
[ ] (no negative weights)
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Dijkstra's Algorithm: running time

• Extract-Min executed |V| time
• Decrease-Key executed |E| time
• Time = |V| TExtract-Min + |E| TDecrease-Key

• T depends on different Q implementations

Q T(Extract-
Min)

T(Decrease-
Key)

Total

array Ο(V) Ο(1) Ο(V 2)
binary heap Ο(lg V) Ο(lg V) Ο(E lg V)
Fibonacci heap Ο(lg V) Ο(1) (amort.) Ο(V lgV + E)
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Bellman-Ford Algorithm

• Dijkstra’s doesn’t work when there are 
negative edges:
– Intuition:  we can not be greedy any more 

on the assumption that the lengths of paths 
will only increase in the future

• Bellman-Ford algorithm detects 
negative cycles (returns false) or returns 
the shortest path-tree 
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Bellman-Ford Algorithm

Bellman-Ford(G,w,s)
01 for each v ∈ V[G]

02 d[v] ← ∞
03 d[s] ← 0

04 π[s] ← NIL

05 for i ← 1 to |V[G]|-1 do
06 for each edge (u,v) ∈ E[G] do
07 Relax (u,v,w)

08 for each edge (u,v) ∈ E[G] do
09 if d[v] > d[u] + w(u,v) then return false

10 return true
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Bellman-Ford Algorithm: example
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Bellman-Ford Algorithm: example (2)
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• Bellman-Ford running time:
– (|V|-1)|E| + |E| = Θ(|V||E|)
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Bellman-Ford Algorithm: correctness

• Let δi(s,u) denote the length of path from s to u, 
that is shortest among all paths, that contain at 
most i edges

• Prove by induction that d[u]= δi(s,u) after the i-th 
iteration of Bellman-Ford
– Base case (i=0) trivial
– Inductive step (say d[u] = δi-1(s,u)): 

• Either δi(s,u) = δi-1(s,u) 
• Or δi(s,u) = δi-1(s,z) + w(z,u)
• In an iteration we try to relax each edge ((z,u) also), 

so we will catch both cases, thus d[u] = δi(s,u)
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Bellman-Ford Algorithm: correctness (2)

• After n-1 iterations, d[u] = δn-1(s,u), for each 
vertex u.

• If there is still some edge to relax in the graph, 
then there is a vertex u, such that
δn(s,u) < δn-1(s,u). But there are only n vertices 
in G – we have a cycle, and it must be negative.

• Otherwise, d[u]= δn-1(s,u) = δ(s,u), for all u, 
since any shortest path will have at most n-1 
edges
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Next....

Next: All-pairs shortest paths in weighted graphs
– Matrix multiplication and shortest-paths 
– Floyd Warshall algorithm
– Transitive closure
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All-pairs shortest paths

• Suppose that we want to calculate information 
about shortest paths between all pairs of 
vertices.

• We have a matrix W of weights:

• We want a matrix:
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A Recursive Solution

• lij
(0) = 0 if i=j

=  ∞ otherwise
• lij

(m)  = min (lij
(m-1), min 1≤k ≤n {lik

(m-1) +wkj} )
= min 1≤k ≤n {lik

(m-1) +wkj}

δ(i,j) = lij
(n-1) = lij

(n) = lij
(n+1) …..
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Matrix multiplication:

• If A is the adjacency matrix for a graph G, then the ij th
entry of An is exactly the number of ways you can get from 
vertex i to vertex j in exactly n steps.

( ) ∑
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+ =
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ki j
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Shortest path weight for 
m steps from i to k

Weight for a further 
step from k to j

If we replace addition of elements by minimum, and 
multiplication of elements by addition, then the ij th entry 
of Wn is exactly the shortest path from vertex i to vertex j 
in at most n steps.
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Matrix Multiplication contd.

• As in Bellman-Ford, no shortest path has more 
than |V|-1 vertices in it.  Therefore, all the 
information that we need can be read from the 
entries in W|V|-1.

• Each matrix “multiplication” takes O(V3).
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Matrix Multiplication - complexity

• Calculating W|V|-1 takes:
– O(V4) if we do naïve exponentiation:

• A0 = I
• Am+1 = A Am

– Q: How many multiplications are required to 
compute xn ?

– O(V3 log V) if we do fast exponentiation:
• A0 = I
• A1 = A
• A2m = (Am)2

• A2m+1 = A (Am)2
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The Floyd-Warshall algorithm

• Instead of increasing the length of the path 
allowed at each step, suppose that we increase 
the number of vertices that can be used in 
forming such paths.

• Let D(k) be the matrix whose ij th component is 
the shortest-path weight for a path from vertex i 
to vertex j using only vertices 1 though k as 
intermediates.

• Note that D(0) = W.  How can we calculate D(n+1)

in terms of D(n) ?
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Floyd-Warshall algorithm – contd.

• A shortest path from i to j with intermediate 
vertices in 1..k is either:
– A shortest path from i to j with intermediate vertices in 

1..(k-1).

– A shortest path from i to k, and a shortest path from k 
to j, both with vertices in 1..(k-1).

• Hence, for k>1, we can define:
d(k)

ij = min(d(k-1)
ij, d(k-1)

ik + d(k-1)
kj)

i j

i k j
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The Floyd-Warshall algorithm

• Let n = |V|, and calculate all F[k] values using:

Time and space 
complexity are O(V3)
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Floyd-Warshall algorithm - improvement

• In fact, we can do better - we only want 
D(n) :

• Store only D(n) 

• Time complexity is O(V3), space 
complexity is O(V2).
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Transitive closure

• tij
(0) =  0 if i≠j and (i,j) ∉E

=  1 if i=j  or  (i,j) ∈E 
And for m>0

tij
(m)  = tij

(m-1) ∨ (tim
(m-1) ∧ tmj

(m-1) )
• Reachability queries

Given a directed graph G = (V,E), construct a new 
graph G’ = (V,E’) in which (i,j) ∈E’ if there is a path
From i to j in G. 
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Transitive closure algorithm

Very similar to Floyd Warshall:
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Transitive closure example
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Summary

• We have seen different algorithms for:
– computing spanning trees;
– computing minimum spanning trees;
– computing single-source shortest paths;
– computing all-pairs shortest paths.
– Computing transitive closure.

• Greedy algorithms and dynamic 
programming play key roles in these 
algorithms.
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