
3/28/2019 EECS 3101 1

DFS Timestamping

• The DFS algorithm maintains a
monotonically increasing global clock
– discovery time d[u] and finishing time f[u]

• For every vertex u, the inequality d[u] <
f[u] must hold

3/28/2019 EECS 3101 2

DFS Timestamping

• Vertex u is
– white before time d[u]
– gray between time d[u] and time f[u], and
– black thereafter

• Notice the structure througout the
algorithm.
– gray vertices form a linear chain
– correponds to a stack of vertices that have

not been exhaustively explored (DFS-Visit
started but not yet finished)

3/28/2019 EECS 3101 3

DFS Parenthesis Theorem

• Discovery and finish times have parenthesis
structure
– represent discovery of u with left parenthesis "(u"
– represent finishin of u with right parenthesis "u)"
– history of discoveries and finishings makes a well-

formed expression (parenthesis are properly
nested)

• Intuition for proof: any two intervals are either
disjoint or enclosed
– Overlaping intervals would mean finishing

ancestor, before finishing descendant or starting
descendant without starting ancestor

3/28/2019 EECS 3101 4

DFS Parenthesis Theorem (2)

3/28/2019 EECS 3101 5

DFS Edge Classification

• Tree edge (gray to white)
– encounter new vertices (white)

• Back edge (gray to gray)
– from descendant to ancestor

3/28/2019 EECS 3101 6

DFS Edge Classification (2)

• Forward edge (gray to black)
– from ancestor to descendant

• Cross edge (gray to black)
– remainder – between trees or subtrees

3/28/2019 EECS 3101 7

DFS Edge Classification (3)

• Tree and back edges are important
• Most algorithms do not distinguish between

forward and cross edges

3/28/2019 EECS 3101 8

Next:

• Application of DFS: Topological Sort

3/28/2019 EECS 3101 9

Directed Acyclic Graphs

• A DAG is a directed graph with no cycles

• Often used to indicate precedences among
events, i.e., event a must happen before b

• An example would be a parallel code
execution

• Total order can be introduced using
Topological Sorting

3/28/2019 EECS 3101 10

DAG Theorem

• A directed graph G is acyclic if and only if a
DFS of G yields no back edges. Proof:
– suppose there is a back edge (u,v); v is an

ancestor of u in DFS forest. Thus, there is a path
from v to u in G and (u,v) completes the cycle

– suppose there is a cycle c; let v be the first
vertex in c to be discovered and u is a
predecessor of v in c.

• Upon discovering v the whole cycle from v to u is white
• We must visit all nodes reachable on this white path

before return DFS-Visit(v), i.e., vertex u becomes a
descendant of v

• Thus, (u,v) is a back edge

• Thus, we can verify a DAG using DFS!

3/28/2019 EECS 3101 11

Topological Sort Example

• Precedence relations: an edge from x to y means
one must be done with x before one can do y

• Intuition: can schedule task only when all of its
subtasks have been scheduled

3/28/2019 EECS 3101 12

Topological Sort

• Sorting of a directed acyclic graph (DAG)
• A topological sort of a DAG is a linear ordering

of all its vertices such that for any edge (u,v) in
the DAG, u appears before v in the ordering

• The following algorithm topologically sorts a
DAG

• The linked lists comprises a total ordering

Topological-Sort(G)
1) call DFS(G) to compute finishing times f[v] for each vertex v
2) as each vertex is finished, insert it onto the front of a linked list
3) return the linked list of vertices

3/28/2019 EECS 3101 13

Topological Sort

• Running time
– depth-first search: O(V+E) time
– insert each of the |V| vertices to the front of

the linked list: O(1) per insertion
• Thus the total running time is O(V+E)

3/28/2019 EECS 3101 14

Topological Sort Correctness

• Claim: for a DAG, an edge
• When (u,v) explored, u is gray. We can

distinguish three cases
– v = gray

⇒ (u,v) = back edge (cycle, contradiction)
– v = white

⇒ v becomes descendant of u
⇒ v will be finished before u
⇒ f[v] < f[u]

– v = black
⇒ v is already finished
⇒ f[v] < f[u]

• The definition of topological sort is satisfied

(,) [] []u v E f u f v∈ ⇒ >

3/28/2019 EECS 3101 15

Next....

Shortest path problems
Single-source shortest paths in weighted graphs
– Shortest-Path Problems
– Properties of Shortest Paths, Relaxation
– Dijkstra’s Algorithm
– Bellman-Ford Algorithm
– Shortest-Paths in DAG’s

3/28/2019 EECS 3101 16

Shortest Path

• Generalize distance to weighted setting
• Digraph G = (V,E) with weight function

W: E → R (assigning real values to edges)
• Weight of path p = v1 → v2 → … → vk is

• Shortest path = a path of the minimum weight
• Applications

– static/dynamic network routing
– robot motion planning
– map/route generation in traffic

1

1
1

() (,)
k

i i
i

w p w v v
−

+
=

= ∑

3/28/2019 EECS 3101 17

Shortest path problems

• Shortest-Path problems
– Unweighted shortest-paths – BFS.
– Single-source, single-destination: Given two

vertices, find a shortest path between them.
– Single-source, all destinations: Find a

shortest path from a given source (vertex s) to
each of the vertices. The topic of this lecture.
[Solution to this problem solves the previous
problem efficiently]. Greedy algorithm!

– All-pairs. Find shortest-paths for every pair of
vertices. Dynamic programming algorithm.

3/28/2019 EECS 3101 18

Optimal Substructure

• Theorem: subpaths of shortest paths
are shortest paths

• Proof (cut and paste)
– if some subpath were not the shortest path,

one could substitute the shorter subpath
and create a shorter total path

Suggests that there may be a greedy algorithm

3/28/2019 EECS 3101 19

Triangle Inequality

• Definition
– δ(u,v) ≡ weight of a shortest path from u to v

• Theorem
– δ(u,v) ≤ δ(u,x) + δ(x,v) for any x

• Proof
– shortest path u ∈ v is no longer than any other

path u ∈ v – in particular, the path concatenating
the shortest path u ∈ x with the shortest path x ∈ v

3/28/2019 EECS 3101 20

Relaxation

• For each vertex in the graph, we maintain
d[v], the estimate of the shortest path from s,
initialized to ∞ at start

• Relaxing an edge (u,v) means testing
whether we can improve the shortest path to
v found so far by going through u

vu vu

5
u v

2

2

9

5 7

Relax(u,v)

5
u v

2

2

6

5 6

Relax(u,v)

Relax (u,v,w)

if d[v] >
d[u]+w(u,v)then
d[v] ← d[u]+w(u,v)
π[v] ← u

3/28/2019 EECS 3101 21

Dijkstra's Algorithm

• Non-negative edge weights
• Greedy, similar to Prim's algorithm for MST
• Like breadth-first search (if all weights = 1,

one can simply use BFS)
• Use Q, priority queue keyed by d[v] (BFS

used FIFO queue, here we use a PQ, which
is re-organized whenever some d decreases)

• Basic idea
– maintain a set S of solved vertices
– at each step select "closest" vertex u, add it to S,

and relax all edges from u

3/28/2019 EECS 3101 22

Dijkstra's Algorithm: pseudocode

• Graph G, weight function w, root s

relaxing
edges

3/28/2019 EECS 3101 23

Dijkstra's Algorithm: example

∞ ∞

∞ ∞

0s

u v

yx

10

5

1

2 3 9
4 67

2

10 ∞

5 ∞

0s

u v

yx

10

5

1

2 3 9
4 67

2

u v

8 14

5 7

0s

yx

10

5

1

2 3 9
4 67

2

8 13

5 7

0s

u v

yx

10

5

1

2 3 9
4 67

2

3/28/2019 EECS 3101 24

• Observe
– relaxation step (lines 10-11)
– setting d[v] updates Q (needs Decrease-Key)
– similar to Prim's MST algorithm

Dijkstra's Algorithm: example (2)

8 9

5 7

0

u v

yx

10

5

1

2 3 9
4 67

2

8 9

5 7

0

u v

yx

10

5

1

2 3 9
4 67

2

3/28/2019 EECS 3101 25

Dijkstra's Algorithm: correctness

• We will prove that whenever u is added to S,
d[u] = d(s,u), i.e., that d is minimum, and that
equality is maintained thereafter

• Proof
– Note that ∀v, d[v] ≥ d(s,v)
– Let u be the first vertex picked such that there is a

shorter path than d[u], i.e., that ⇒ d[u] > d(s,u)
– We will show that this assumption leads to a

contradiction

3/28/2019 EECS 3101 26

Dijkstra's Algorithm: correctness (2)

• Let y be the first vertex ∈ V – S on the actual
shortest path from s to u, then it must be that
d[y] = δ (s,y) because
– d[x] is set correctly for y's predecessor x ∈ S on

the shortest path (by choice of u as the first vertex
for which d is set incorrectly)

– when the algorithm inserted x into S, it relaxed the
edge (x,y), assigning d[y] the correct value

3/28/2019 EECS 3101 27

• But d[u] > d[y] ⇒ algorithm would have
chosen y (from the PQ) to process next, not u
⇒ Contradiction

• Thus d[u] = δ(s,u) at time of insertion of u into
S, and Dijkstra's algorithm is correct

Dijkstra's Algorithm: correctness (3)

[] (,) (initial assumption)
(,) (,) (optimal substructure)
[] (,) (correctness of [])
[] (no negative weights)

d u s u
s y y u

d y y u d y
d y

> δ
= δ + δ
= + δ
≥

3/28/2019 EECS 3101 28

Dijkstra's Algorithm: running time

• Extract-Min executed |V| time
• Decrease-Key executed |E| time
• Time = |V| TExtract-Min + |E| TDecrease-Key

• T depends on different Q implementations

Q T(Extract-
Min)

T(Decrease-
Key)

Total

array Ο(V) Ο(1) Ο(V 2)
binary heap Ο(lg V) Ο(lg V) Ο(E lg V)
Fibonacci heap Ο(lg V) Ο(1) (amort.) Ο(V lgV + E)

3/28/2019 EECS 3101 29

Bellman-Ford Algorithm

• Dijkstra’s doesn’t work when there are
negative edges:
– Intuition: we can not be greedy any more

on the assumption that the lengths of paths
will only increase in the future

• Bellman-Ford algorithm detects
negative cycles (returns false) or returns
the shortest path-tree

3/28/2019 EECS 3101 30

Bellman-Ford Algorithm

Bellman-Ford(G,w,s)
01 for each v ∈ V[G]

02 d[v] ← ∞
03 d[s] ← 0

04 π[s] ← NIL

05 for i ← 1 to |V[G]|-1 do
06 for each edge (u,v) ∈ E[G] do
07 Relax (u,v,w)

08 for each edge (u,v) ∈ E[G] do
09 if d[v] > d[u] + w(u,v) then return false

10 return true

3/28/2019 EECS 3101 31

Bellman-Ford Algorithm: example

5

∞ ∞

∞ ∞

0s

zy

6

7

8
-3

7
2

9

-2
xt

-4

6 ∞

7 ∞

0s

zy

6

7

8
-3

7
2

9

-2
xt

-4

6 4

7 2

0s

zy

6

7

8
-3

7
2

9

-2
xt

-4

2 4

7 2

0s

zy

6

7

8
-3

7
2

9

-2
xt

-4

5

5 5

3/28/2019 EECS 3101 32

Bellman-Ford Algorithm: example (2)

2 4

7 −2

0s

zy

6

7

8
-3

7
2

9

-2
xt

-4

• Bellman-Ford running time:
– (|V|-1)|E| + |E| = Θ(|V||E|)

5

3/28/2019 EECS 3101 33

Bellman-Ford Algorithm: correctness

• Let δi(s,u) denote the length of path from s to u,
that is shortest among all paths, that contain at
most i edges

• Prove by induction that d[u]= δi(s,u) after the i-th
iteration of Bellman-Ford
– Base case (i=0) trivial
– Inductive step (say d[u] = δi-1(s,u)):

• Either δi(s,u) = δi-1(s,u)
• Or δi(s,u) = δi-1(s,z) + w(z,u)
• In an iteration we try to relax each edge ((z,u) also),

so we will catch both cases, thus d[u] = δi(s,u)

3/28/2019 EECS 3101 34

Bellman-Ford Algorithm: correctness (2)

• After n-1 iterations, d[u] = δn-1(s,u), for each
vertex u.

• If there is still some edge to relax in the graph,
then there is a vertex u, such that
δn(s,u) < δn-1(s,u). But there are only n vertices
in G – we have a cycle, and it must be negative.

• Otherwise, d[u]= δn-1(s,u) = δ(s,u), for all u,
since any shortest path will have at most n-1
edges

3/28/2019 EECS 3101 35

Next....

Next: All-pairs shortest paths in weighted graphs
– Matrix multiplication and shortest-paths
– Floyd Warshall algorithm
– Transitive closure

3/28/2019 EECS 3101 36

All-pairs shortest paths

• Suppose that we want to calculate information
about shortest paths between all pairs of
vertices.

• We have a matrix W of weights:

• We want a matrix:

∞∞∞

∞∞
∞

0
2021
10
110

a b

c d

∞∞∞

∞∞
∞

0
0001
10
110

3/28/2019 EECS 3101 37

A Recursive Solution

• lij
(0) = 0 if i=j

= ∞ otherwise
• lij

(m) = min (lij
(m-1), min 1≤k ≤n {lik

(m-1) +wkj})
= min 1≤k ≤n {lik

(m-1) +wkj}

δ(i,j) = lij
(n-1) = lij

(n) = lij
(n+1) …..

3/28/2019 EECS 3101 38

Matrix multiplication:

• If A is the adjacency matrix for a graph G, then the ij th
entry of An is exactly the number of ways you can get from
vertex i to vertex j in exactly n steps.

() ∑
=

+ =
q

k
ki k

m
i j

m AAA
1

1)(

ways to get from i to
k in exactly m steps

ways to get from k
to j in one step

() ()k ji k
m

q

ki j
m WWW +=

=

+)(m i n
1

1

Shortest path weight for
m steps from i to k

Weight for a further
step from k to j

If we replace addition of elements by minimum, and
multiplication of elements by addition, then the ij th entry
of Wn is exactly the shortest path from vertex i to vertex j
in at most n steps.

3/28/2019 EECS 3101 39

Matrix Multiplication contd.

• As in Bellman-Ford, no shortest path has more
than |V|-1 vertices in it. Therefore, all the
information that we need can be read from the
entries in W|V|-1.

• Each matrix “multiplication” takes O(V3).

3/28/2019 EECS 3101 40

Matrix Multiplication - complexity

• Calculating W|V|-1 takes:
– O(V4) if we do naïve exponentiation:

• A0 = I
• Am+1 = A Am

– Q: How many multiplications are required to
compute xn ?

– O(V3 log V) if we do fast exponentiation:
• A0 = I
• A1 = A
• A2m = (Am)2

• A2m+1 = A (Am)2

3/28/2019 EECS 3101 41

The Floyd-Warshall algorithm

• Instead of increasing the length of the path
allowed at each step, suppose that we increase
the number of vertices that can be used in
forming such paths.

• Let D(k) be the matrix whose ij th component is
the shortest-path weight for a path from vertex i
to vertex j using only vertices 1 though k as
intermediates.

• Note that D(0) = W. How can we calculate D(n+1)

in terms of D(n) ?

3/28/2019 EECS 3101 42

Floyd-Warshall algorithm – contd.

• A shortest path from i to j with intermediate
vertices in 1..k is either:
– A shortest path from i to j with intermediate vertices in

1..(k-1).

– A shortest path from i to k, and a shortest path from k
to j, both with vertices in 1..(k-1).

• Hence, for k>1, we can define:
d(k)

ij = min(d(k-1)
ij, d(k-1)

ik + d(k-1)
kj)

i j

i k j

3/28/2019 EECS 3101 43

The Floyd-Warshall algorithm

• Let n = |V|, and calculate all F[k] values using:

Time and space
complexity are O(V3)

3/28/2019 EECS 3101 44

Floyd-Warshall algorithm - improvement

• In fact, we can do better - we only want
D(n) :

• Store only D(n)

• Time complexity is O(V3), space
complexity is O(V2).

3/28/2019 EECS 3101 45

Transitive closure

• tij
(0) = 0 if i≠j and (i,j) ∉E

= 1 if i=j or (i,j) ∈E
And for m>0

tij
(m) = tij

(m-1) ∨ (tim
(m-1) ∧ tmj

(m-1))
• Reachability queries

Given a directed graph G = (V,E), construct a new
graph G’ = (V,E’) in which (i,j) ∈E’ if there is a path
From i to j in G.

3/28/2019 EECS 3101 46

Transitive closure algorithm

Very similar to Floyd Warshall:

3/28/2019 EECS 3101 47

Transitive closure example

3/28/2019 EECS 3101 48

Summary

• We have seen different algorithms for:
– computing spanning trees;
– computing minimum spanning trees;
– computing single-source shortest paths;
– computing all-pairs shortest paths.
– Computing transitive closure.

• Greedy algorithms and dynamic
programming play key roles in these
algorithms.

	DFS Timestamping
	DFS Timestamping
	DFS Parenthesis Theorem
	DFS Parenthesis Theorem (2)
	DFS Edge Classification
	DFS Edge Classification (2)
	DFS Edge Classification (3)
	Next:
	Directed Acyclic Graphs
	DAG Theorem
	Topological Sort Example
	Topological Sort
	Topological Sort
	Topological Sort Correctness
	Next....
	Shortest Path
	Shortest path problems
	Optimal Substructure
	Triangle Inequality
	Relaxation
	Dijkstra's Algorithm
	Dijkstra's Algorithm: pseudocode
	Dijkstra's Algorithm: example
	Dijkstra's Algorithm: example (2)
	Dijkstra's Algorithm: correctness
	Dijkstra's Algorithm: correctness (2)
	Dijkstra's Algorithm: correctness (3)
	Dijkstra's Algorithm: running time
	Bellman-Ford Algorithm
	Bellman-Ford Algorithm
	Bellman-Ford Algorithm: example
	Bellman-Ford Algorithm: example (2)
	Bellman-Ford Algorithm: correctness
	Bellman-Ford Algorithm: correctness (2)
	Next....
	All-pairs shortest paths
	A Recursive Solution
	Matrix multiplication:
	Matrix Multiplication contd.
	Matrix Multiplication - complexity
	The Floyd-Warshall algorithm
	Floyd-Warshall algorithm – contd.
	The Floyd-Warshall algorithm
	Floyd-Warshall algorithm - improvement
	Transitive closure
	Transitive closure algorithm
	Slide Number 47
	Summary

