DFS Timestamping

 The DFS algorithm maintains a
monotonically increasing global clock

— discovery time d[u] and finishing time f[u]

* For every vertex u, the inequality d[u] <
flu] must hold

3/28/2019 EECS 3101 1

DFS Timestamping

e Vertex u Is
— white before time d[u]
— gray between time d[u] and time f[u], and
— black thereafter

e Notice the structure througout the
algorithm.
— gray vertices form a linear chain

— correponds to a stack of vertices that have
not been exhaustively explored (DFS-Visit
started but not yet finished)

3/28/2019 EECS 3101 2

DFS Parenthesis Theorem

« Discovery and finish times have parenthesis
structure
— represent discovery of u with left parenthesis "(u"
— represent finishin of u with right parenthesis "u)"

— history of discoveries and finishings makes a well-
formed expression (parenthesis are properly
nested)

 Intuition for proof: any two intervals are either
disjoint or enclosed

— Overlaping intervals would mean finishing
ancestor, before finishing descendant or starting
descendant without starting ancestor

3/28/2019 EECS 3101 3

DFS Parenthesis Theorem (2)

Yy y 4 S t
X W Vv u

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

t

s @ @y (x x y) (w w 2) s) (t (v v) (u u) t

3/28/2019 EECS 3101 4

DFS Edge Classification

* Tree edge (gray to white)

— encounter new vertices (white)
 Back edge (gray to gray)

— from descendant to ancestor

3/28/2019 EECS 3101

DFS Edge Classification (2)

 Forward edge (gray to black)
— from ancestor to descendant

e Cross edge (gray to black)
— remainder — between trees or subtrees

3/28/2019 EECS 3101 6

DFS Edge Classification (3)

* Tree and back edges are important

* Most algorithms do not distinguish between
forward and cross edges

3/28/2019 EECS 3101 7

Next:

« Application of DFS: Topological Sort

3/28/2019 EECS 3101 8

Directed Acyclic Graphs

« ADAG is a directed graph with no cycles

Fas

e Often used to indicate precedences among
events, I.e., event a must happen before b

 An example would be a parallel code
execution

« Total order can be introduced using
Topological Sorting

3/28/2019 EECS 3101 9

DAG Theorem

« Adirected graph G is acyclic if and only if a
DFS of G yields no back edges. Proof:

— suppose there is a back edge (u,v); vis an
ancestor of u in DFS forest. Thus, there is a path
from v to uin G and (u,v) completes the cycle

— suppose thereis acycle c; let v be the first
vertex in ¢ to be discovered and u is a
predecessor of v in c.

« Upon discovering v the whole cycle from v to u is white

 We must visit all nodes reachable on this white path
before return DFS-Visit(v), i.e., vertex u becomes a
descendant of v

* Thus, (u,v) is a back edge

e Thus, we can verify a DAG using DFS!
3/28/2019 EECS 3101 10

Topological Sort Example

* Precedence relations: an edge from x to y means
one must be done with x before one candoy

 |Intuition: can schedule task only when all of its
subtasks have been scheduled

17118
=(shoes) 13/14

11/16 @Hderﬁhﬂﬂﬁ

12/15 | pants

D
17/18 11/16 12/15 13/14 9/10 1 /& 6/7 2/5 34

3/28/2019 EECS 3101 11

Topological Sort

e Sorting of a directed acyclic graph (DAG)

» Atopological sort of a DAG is a linear ordering
of all its vertices such that for any edge (u,v) In
the DAG, u appears before v in the ordering

* The following algorithm topologically sorts a
DAG

Topological-Sort(G)

1) call DFS(G) to compute finishing times f[v] for each vertex v
2) as each vertex is finished, insert it onto the front of a linked list
3) return the linked list of vertices

* The linked lists comprises a total ordering

3/28/2019 EECS 3101 12

Topological Sort

 Running time
— depth-first search: O(V+E) time

—Insert each of the |V| vertices to the front of
the linked list: O(1) per insertion

e Thus the total running time is O(V+E)

3/28/2019 EECS 3101 13

Topological Sort Correctness

e Claim: for a DAG, an edge (U,V) € E= T[u]> T[v]

 When (u,v) explored, u is gray. We can
distinguish three cases
— vV =gray
= (u,v) = back edge (cycle, contradiction)
— v = white
= Vv becomes descendant of u
= v Will be finished before u
= f[v] < fu]
— v = black

= Vv IS already finished
= f[v] < f[u]

* The definition of topological sort is satisfied

3/28/2019 EECS 3101 14

Next....

Shortest path problems
Single-source shortest paths in weighted graphs
— Shortest-Path Problems
— Properties of Shortest Paths, Relaxation
— Dijkstra’s Algorithm
— Bellman-Ford Algorithm
— Shortest-Paths in DAG's

3/28/2019 EECS 3101 15

Shortest Path

« Generalize distance to weighted setting
 Digraph G = (V,E) with weight function

W: E — R (assigning real values to edges)
 Weight of pathp=v, > Vv, > ... >V, IS

W(P) = 3 W(V, Y.,

o Shortest path = a path of the minimum welight

* Applications
— static/dynamic network routing
— robot motion planning
— map/route generation in traffic

3/28/2019 EECS 3101 16

Shortest path problems

e Shortest-Path problems
— Unweighted shortest-paths — BFS.

— Single-source, single-destination: Given two
vertices, find a shortest path between them.

— Single-source, all destinations: Find a
shortest path from a given source (vertex s) to
each of the vertices. The topic of this lecture.

[Solution to this problem solves the previous
problem efficiently]. Greedy algorithm!

— All-pairs. Find shortest-paths for every pair of
vertices. Dynamic programming algorithm.

3/28/2019 EECS 3101 17

Optimal Substructure

 Theorem: subpaths of shortest paths
are shortest paths

* Proof (cut and paste)

— If some subpath were not the shortest path,
one could substitute the shorter subpath
and create a shorter total path

OO O30

Suggests that there may be a greedy algorithm

3/28/2019 EECS 3101 18

Triangle Inequality

o Definition

— 9d(u,v) = weight of a shortest path from uto v
« Theorem

— d(u,v) <38(u,x) + 8(x,v) for any x
e Proof

— shortest path u € v is no longer than any other
path u € v — In particular, the path concatenating
the shortest path u € x with the shortest path x e v

3/28/2019 EECS 3101 19

Relaxation

« For each vertex in the graph, we maintain
d[v], the estimate of the shortest path from s,
initialized to « at start

 Relaxing an edge (u,v) means testing
whether we can improve the shortest path to
v found so far by going through u

u u Relax (u,v,w)

V V
it d[v] >

l Relax(u,v) lReIax(u,v) dd[‘[J]]““W(u,dv[)gflen()
v] < dlu]+w(u,v
M n[v] <« u
u v u Y

3/28/2019 EECS 3101 20

Dijkstra's Algorithm

 Non-negative edge weights
o Greedy, similar to Prim's algorithm for MST

* Like breadth-first search (if all weights =1,
one can simply use BFS)

« Use Q, priority queue keyed by d[v] (BFS
used FIFO gueue, here we use a PQ, which
IS re-organized whenever some d decreases)

e Basic idea
— maintain a set S of solved vertices

— at each step select "closest" vertex u, add it to S,
and relax all edges from u

3/28/2019 EECS 3101 21

Dijkstra's Algorithm: pseudocode

e Graph G, weight function w, root s

DIIKSTRA(G, w, s)
1 for eachv e V

2 do d[v] «— oo

3 d[s] —0

48— > Setof discovered nodes

5@V

6 while Q # ()

7 do u — EXTRACT-MIN(Q)

8 S — Sudu}

9 for each v € Adjul -
10 doif djv| > du| + w(u, v) relaxing
11 then d[v| — d[u] + w(u, v) edges

3/28/2019 EECS 3101 22

Dijkstra's Algorithm: example

3/28/2019 EECS 3101 23

Dijkstra's Algorithm: example (2)

e Observe
— relaxation step (lines 10-11)
— setting d[v] updates Q (needs Decrease-Key)
— similar to Prim's MST algorithm

3/28/2019 EECS 3101 24

Dijkstra's Algorithm: correctness

 We will prove that whenever u is added to S,
d[u] = d(s,u), I.e., that d iIs minimum, and that
equality iIs maintained thereafter

e Proof

— Note that Vv, d[v] > d(s,V)

— Let u be the first vertex picked such that there is a
shorter path than d[u], i.e., that = d[u] > d(s,u)

— We will show that this assumption leads to a
contradiction

3/28/2019 EECS 3101 25

Dijkstra's Algorithm: correctness (2)

e Lety be the first vertex € V — S on the actual
shortest path from s to u, then it must be that
dly] = o (s,y) because

— d[x] is set correctly for y's predecessor x € S on
the shortest path (by choice of u as the first vertex
for which d is set incorrectly)

— when the algorithm inserted x into S, it relaxed the
edge (x,y), assigning d[y] the correct value

3/28/2019 EECS 3101 26

Dijkstra's Algorithm: correctness (3)

dlu] > 6(s,u) (initial assumption)
= 9(s,y)+9d(y,u) (optimal substructure)
= d[y]+d(y,u) (correctness of d[y])
> d[y] (no negative weights)

e But d[u] > d[y] = algorithm would have
chosen y (from the PQ) to process next, not u
— Contradiction

e Thus d[u] = 5(s,u) at time of insertion of u into
S, and Dijkstra's algorithm is correct

3/28/2019 EECS 3101 27

Dijkstra's Algorithm: running time

o Extract-Min executed |V| time
 Decrease-Key executed |E| time

* Time = |V| TExtract-I\/Iin T |E| TDecrease-Key

* T depends on different Q implementations

Q T(Extract- | T(Decrease- Total

Min) Key)
array AV) (1) AV ?)
binary heap g V) Alg V) (E Ig V)
Fibonacci heap g V) (1) (amort.) OV lgV + E)

3/28/2019 EECS 3101 28

Bellman-Ford Algorithm

* Dijkstra’s doesn’t work when there are
negative edges:

— Intuition: we can not be greedy any more
on the assumption that the lengths of paths
will only increase In the future

* Bellman-Ford algorithm detects
negative cycles (returns false) or returns
the shortest path-tree

3/28/2019 EECS 3101 29

Bellman-Ford Algorithm

Bellman-Ford(G,w,s)

01 for each v e V[(G]

02 div] « =«

03 dJs] « O

04 n[s] <« NIL

05 for 1 « 1 to |V[G]]-1 do

06 for each edge (u,v) € E[G] do

07 Relax (u,v,w)

08 for each edge (u,v) € E[G] do

09 it dJv] > dJu] + w(u,v) then return false

10 return true

3/28/2019 EECS 3101 30

Bellman-Ford Algorithm: example

5

'»0 - - @'5 -

MMN M\u

5

N~ N~
(8] A8~ (3] A~ o
qp)

fop) TolR for)

EECS 3101

3/28/2019

Bellman-Ford Algorithm: example (2)

* Bellman-Ford running time:
- (IVI-DIE[+ [E| = ©(V][E])

3/28/2019 EECS 3101 32

Bellman-Ford Algorithm: correctness

» Let (s,u) denote the length of path from s to u,
that is shortest among all paths, that contain at
most | edges

* Prove by induction that d[u]= &(s,u) after the i-th
iteration of Bellman-Ford
— Base case (i=0) trivial
— Inductive step (say d[u] = &_,(s,u)):
 Either &(s,u) = J_,(s,u)
* Or gi(s,u) = 6,.4(8.2) +w(z,u)

 In an iteration we try to relax each edge ((z,u) also),
so we will catch both cases, thus d[u] = &(s,u)

3/28/2019 EECS 3101 33

Bellman-Ford Algorithm: correctness (2)

e After n-1 iterations, d[u] = ¢&,,(s,u), for each
vertex u.

 |f there is still some edge to relax in the graph,
then there Is a vertex u, such that

0,(S,u) < &,.4(s,u). But there are only n vertices
In G — we have a cycle, and it must be negative.

 Otherwise, d[u]= & ,(s,u) = &s,u), for all u,
since any shortest path will have at most n-1

edges

3/28/2019 EECS 3101 34

Next....

Next: All-pairs shortest paths in weighted graphs
— Matrix multiplication and shortest-paths

— Floyd Warshall algorithm

— Transitive closure

3/28/2019 EECS 3101 35

All-pairs shortest paths

e Suppose that we want to calculate information
about shortest paths between all pairs of

vertices.
G‘Q

() ()
0 1 o 1
» We have a matrix W of weights: |7 * *
o o oo 0
0 1 o 1
o 0 o 1
e We want a matrix: 1 2 0 2
o oo oo 0

3/28/2019 EECS 3101 36

A Recursive Solution

. Iij(O) =0 if igj
= oo otherwise

. |ij(m) = min (lij(m_l)1 min ;o o {li ™Y Wit)
=min g, {lyp™Y +ij}

3(ij) = 1,0V=1,0=1,0:D

3/28/2019 EECS 3101 37

Matrix multiplication:

« If Ais the adjacency matrix for a graph G, then the ij t
entry of A" is exactly the number of ways you can get from
vertex | to vertex | in exactly n steps.

(Am+l)i i Zq:(Am)i i

ways to get from i to # ways to get from k
k in exactly m steps to j in one step

If we replace addition of elements by minimum, and
multiplication of elements by addition, then the ij th entry
of Wn is exactly the shortest path from vertex i to vertex |

In at most n steps.
| wr) = qu (™) W,)J

Shortest path weight for Weight for a further
m steps from i to k step from k to j

3/28/2019 EECS 3101 38

Matrix Multiplication contd.

* As in Bellman-Ford, no shortest path has more
than |V|-1 vertices in it. Therefore, all the

Information that we need can be read from the
entries in WIVI-L,

e Each matrix “multiplication” takes O(V?3).

3/28/2019 EECS 3101 39

Matrix Multiplication - complexity

e Calculating W™ takes:

— O(V4) if we do naive exponentiation:
e AO =
o AMtl = A AM

— Q: How many multiplications are required to
compute x"?

— O(V3 log V) if we do fast exponentiation:

e AO =

o Al = A

° A2m — (Am)2

° A2m+1 = A (Am)Z

3/28/2019 EECS 3101 40

The Floyd-Warshall algorithm

* |Instead of increasing the length of the path
allowed at each step, suppose that we increase
the number of vertices that can be used in

forming such paths.

« Let DK be the matrix whose ij th com

oonent IS

the shortest-path weight for a path from vertex i

to vertex j using only vertices 1 thoug
Intermediates.

in terms of DM ?

N k as

Note that D© = W. How can we calculate D(+1)

3/28/2019 EECS 3101 41

Floyd-Warshall algorithm — contd.

* A shortest path from | to | with intermediate
vertices in 1..k is either:

— A shortest path from I to | with intermediate vertices In

— A shortest path from I to k, and a shortest path from k
to j, both with vertices in 1..(k-1).

1..(k-1). ‘

e Hence, for k>1, we can define:
d®; = min(d®D,, kD, + dk),)

[
»

3/28/2019 EECS 3101 42

The Floyd-Warshall algorithm

 Let n=|V|, and calculate all F[k] values using:

Time and space
complexity are O(V3)

FLOYD-WARSHALL (W)
I n < rows[W]

2 le{]fl — W

3 fork < 1ton

4 do fori < 1 ton
S do for j < 1ton
6

7

(k) . (k—1) {(k—1) (k—1)"
dod; < min(d; ", d, " + di;)

return DWW

3/28/2019 EECS 3101 43

Floyd-Warshall algorithm - improvement

In fact, we can do better - we only want
D) :

¢ Store only D

« Time complexity is O(V?3), space
complexity is O(V?).

3/28/2019 EECS 3101 44

Transitive closure

Given a directed graph G = (V,E), construct a new
graph G’ = (V,E’) in which (1,)) €E’ if there Is a path
Fromitojin G.

» ;09 = 0ifizjand (i,)) ¢E
= 1ifizj or (ij) eE
And for m>0
tij(m) = tij(m-l) \/ (tim(m-l) A tmj(m-l))
e Reachability queries

3/28/2019 EECS 3101 45

Transitive closure algorithm

Very similar to Floyd Warshall:
TRANSITIVE-CLOSURE(G)

| n <« |[VIG]]

2 fori <« 1ton

3 dofor j — 1ton

4 doifi = jor(i,j) € E[G]
5 then 7 « 1

6 else r}f” — 0

7 fork <« 1ton

8 dofori <« 1ton

9 do for j — 1 ton

0 do) i (Y i)
11 return 7W
3/28/2019 EECS 3101 46

Transitive closure example

I 0 0 0 1 0 0 0 1 0O 0 0O
0 1 1 1 0O 1 1 1 0O 1 1 1
7(0) _ M _ @ _
o1 10| T o1 10| T7=lo 1 1 i
I 0 1 1 1 0 1 1 1 0 1 1
1 0 0 0 1 0 0 0
(3) _ 0 1 1 1 4) _ 1 1 1 1
r 0 1 1 1 ™= 1 1 1 1
1 1 1 1 1 1 1 1

Figure 25.5 A directed graph and the matrices 7 %) computed by the transitive-closure algorithm.

3/28/2019 EECS 3101 47

Summary

* \We have seen different algorithms for:
— computing spanning trees,;
— computing minimum spanning trees;
— computing single-source shortest paths;
— computing all-pairs shortest paths.
— Computing transitive closure.

* Greedy algorithms and dynamic
programming play key roles in these
algorithms.

3/28/2019 EECS 3101 48

	DFS Timestamping
	DFS Timestamping
	DFS Parenthesis Theorem
	DFS Parenthesis Theorem (2)
	DFS Edge Classification
	DFS Edge Classification (2)
	DFS Edge Classification (3)
	Next:
	Directed Acyclic Graphs
	DAG Theorem
	Topological Sort Example
	Topological Sort
	Topological Sort
	Topological Sort Correctness
	Next....
	Shortest Path
	Shortest path problems
	Optimal Substructure
	Triangle Inequality
	Relaxation
	Dijkstra's Algorithm
	Dijkstra's Algorithm: pseudocode
	Dijkstra's Algorithm: example
	Dijkstra's Algorithm: example (2)
	Dijkstra's Algorithm: correctness
	Dijkstra's Algorithm: correctness (2)
	Dijkstra's Algorithm: correctness (3)
	Dijkstra's Algorithm: running time
	Bellman-Ford Algorithm
	Bellman-Ford Algorithm
	Bellman-Ford Algorithm: example
	Bellman-Ford Algorithm: example (2)
	Bellman-Ford Algorithm: correctness
	Bellman-Ford Algorithm: correctness (2)
	Next....
	All-pairs shortest paths
	A Recursive Solution
	Matrix multiplication:
	Matrix Multiplication contd.
	Matrix Multiplication - complexity
	The Floyd-Warshall algorithm
	Floyd-Warshall algorithm – contd.
	The Floyd-Warshall algorithm
	Floyd-Warshall algorithm - improvement
	Transitive closure
	Transitive closure algorithm
	Slide Number 47
	Summary

