
4/2/2019 EECS 3101 1

Intractability

• Tractable and intractable problems
– What is a ”reasonable” running time?
– NP problems, examples
– NP-complete problems and polynomial

reducability
• There are many practically important problems that

have not yielded algorithms with sub-exponential
worst case running time even with years of effort.

4/2/2019 EECS 3101 2

Traveling Salesman Problem

• A traveling salesperson needs to visit n cities
• Is there a route of at most d length? (decision

problem)
– Optimization-version asks to find a shortest cycle

visiting all vertices once in a weighted graph

4/2/2019 EECS 3101 3

TSP Algorithms

• Naive solutions take n! time in worst-case,
where n is the number of edges of the graph

• No polynomial-time algorithms are known
– TSP is an NP-complete problem

• Longest Path problem between A and B in a
weighted graph is also NP-complete
– Remember the running time for the shortest path

problem

4/2/2019 EECS 3101 4

Reasonable vs. Unreasonable

Growth rates

1

1E+10

1E+20

1E+30

1E+40

2 4 8 16 32 64 128 256 512 1024

5n
n^3
n^5
1.2^n
2^n
n^n

Number of
microseconds
since “Big-
Bang”

4/2/2019 EECS 3101 5

Reasonable vs. Unreasonable

function/
n 10 20 50 100 300

n2 1/10,000
second

1/2,500
second

1/400
second

1/100
second

9/100
second

n5 1/10
second

3.2
seconds

5.2
minutes

2.8
hours

28.1
days

2n 1/1000
second

1
second

35.7
years

400 trillion
centuries

a 75 digit-
number of
centuries

nn 2.8
hours

3.3 trillion
years

a 70 digit-
number of
centuries

a 185 digit-
number of
centuries

a 728 digit-
number of
centuries

Ex
po

ne
nt

ia
l

Po
ly

no
m

ia
l

4/2/2019 EECS 3101 6

Reasonable vs. Unreasonable

• ”Good”, reasonable algorithms
– algorithms bound by a polynomial function nk

– Tractable problems
• ”Bad”, unreasonable algorithms

– algorithms whose running time is above nk

– Intractable problems

intractable
problems

tractable
problems

problems not admitting
reasonable algorithms

problems admitting reasonable
(polynomial-time) algorithms

4/2/2019 EECS 3101 7

Counterpoints?

• Computers become faster every day
– insignificant (a constant) compared to exp.

running time
• Maybe the TSP is just one specific

problem, we could simply ignore?
– the TSP falls into a category of problems

called NPC (NP complete) problems
(~1000 problems)

– all admit unreasonable solutions
– not known to admit reasonable ones…

4/2/2019 EECS 3101 8

Coloring Problem (COLOR)

• 3-color
– given a planar map, can it be colored using

3 colors so that no adjacent regions have
the same color

Find an error! =>

4/2/2019 EECS 3101 9

Coloring Problem (2)

NO instance
Impossible to 3-color Nevada
and bordering states!

4/2/2019 EECS 3101 10

Coloring Problem (3)

• Any map can be 4-colored
• Maps that contain no points that are the

junctions of an odd number of states
can be 2-colored

• No polynomial algorithms are known to
determine whether a map can be 3-
colored – it’s an NP-complete problem

4/2/2019 EECS 3101 11

Determining Truth (SAT)

• Determine the truth or falsity of logical
sentences in a simple logical formalism called
propositional calculus

• Using the logical connectives (&-and, ∨-or, ~-
not, →-implies) we compose expressions such
as the following
~(E → F) & (F ∨ (D → ~E))

• The algorithmic problem calls for determining
the satisfiability of such sentences
– e.g., E = true, D and F = false

4/2/2019 EECS 3101 12

Determining Truth (SAT)

 Exponential time algorithm on n = the number
of distinct elementary assertions (Θ(2n))

 Best known solution, problem is in NP-complete
class!

4/2/2019 EECS 3101 13

CLIQUE

• Given n people and their pairwise
relationships, is there a group of s
people such that every pair in the
group knows each other
– people: a, b, c, …, k
– friendships: (a,e), (a,f),…
– clique size: s = 4?
– YES, {b, d, i, h} is a

certificate!

4/2/2019 EECS 3101 14

P

• Definition of P:
– Set of all decision problems solvable in polynomial

time on a deterministic Turing machine
• Examples:

– SHORTEST PATH: Is the shortest path between u
and v in a graph shorter than k?

– RELPRIME: Are the integers x and y relatively
prime?

• YES: (x, y) = (34, 39).
– MEDIAN: Given integers x1 , …, xn , is the median

value < M?
• YES: (M, x1 , x2 , x3 , x4 , x5) = (17, 2, 5, 17, 22, 104)

4/2/2019 EECS 3101 15

P(2)

• P is the set of all decision problems
solvable in polynomial time on REAL
computers.

4/2/2019 EECS 3101 16

Short Certificates

• To find a solution for an NPC problem, we
seem to be required to try out exponential
amounts of partial solutions

• Failing in extending a partial solution requires
backtracking

• However, once we found a solution,
convincing someone of it is easy, if we keep a
proof, i.e., a certificate

• The problem is finding an answer
(exponential), but not verifying a potential
solution (polynomial)

4/2/2019 EECS 3101 17

Short Certificates (2)

4/2/2019 EECS 3101 18

On Magic Coins and Oracles

• Assume we use a magic coin in the backtracking
algorithm
– whenever it is possible to extend a partial solutions in

> 1 ways, we toss a magic coin (next city, next truth
assignment, etc.)

– the outcome of this ”act” determines further actions –
we use magical insight, supernatural powers!

• Such algorithms are termed ”non-deterministic”
– they guess which option is better, rather than

employing some deterministic procedure to go
through the alternatives

4/2/2019 EECS 3101 19

NP

• Definition of NP:
– Set of all decision problems solvable in polynomial

time on a NONDETERMINISTIC Turing machine
– Definition important because it links many

fundamental problems
• Useful alternative definition

– Set of all decision problems with efficient verification
algorithms

• efficient = polynomial number of steps on deterministic TM
– Verifier: algorithm for decision problem with extra

input

4/2/2019 EECS 3101 20

NP (2)

• NP = set of decision problems with
efficient verification algorithms

• Why doesn’t this imply that all problems
in NP can be solved efficiently?
– BIG PROBLEM: need to know certificate

ahead of time
• real computers can simulate by guessing all

possible certificates and verifying
• naïve simulation takes exponential time

unless you get "lucky"

4/2/2019 EECS 3101 21

NP-Completeness

• Informal definition of NP-hard:
– A problem with the property that if it can be

solved efficiently, then it can be used as a
subroutine to solve any other problem in
NP efficiently

• NP-complete problems are NP
problems that are NP-hard
– ”Hardest computational problems” in NP

4/2/2019 EECS 3101 22

The Main Question

• Does P = NP?
– Is the original DECISION problem as easy as

VERIFICATION?
• Most important open problem in theoretical

computer science. Clay institute of mathematics
offers one-million dolar prize!

4/2/2019 EECS 3101 23

The Main Question (2)

• If P=NP, then:
– Efficient algorithms for 3- COLOR, TSP, and

factoring.
– Cryptography is impossible on conventional

machines
– Modern banking systems will collapse

• If no, then:
– Can’t hope to write efficient algorithm for TSP

• see NP- completeness
– But maybe efficient algorithm still exists for testing

the primality of a number – i.e., there are some
problems that are NP, but not NP-complete

4/2/2019 EECS 3101 24

The Main Question (3)

• Probably no, since:
– Thousands of researchers have spent four

decades in search of polynomial algorithms
for many fundamental NP-complete
problems without success

– Consensus opinion: P ≠ NP
• But maybe yes, since:

– No success in proving P ≠ NP either

4/2/2019 EECS 3101 25

Dealing with NP-Completeness

• Hope that a worst case doesn’t occur
– Complexity theory deals with worst case behavior.

The instance(s) you want to solve may be "easy"
• TSP where all points are on a line or circle
• 13,509 US city TSP problem solved (Cook et. al., 1998)

• Change the problem
– Develop a heuristic, and hope it produces a good

solution.
– Design an approximation algorithm: algorithm that

is guaranteed to find a high- quality solution in
polynomial time

• active area of research, but not always possible

• Keep trying to prove P = NP.

4/2/2019 EECS 3101 26

The Big Picture

• It is not known whether NP problems are
tractable or intractable

• But, there exist provably intractable
problems
– Even worse – there exist problems with

running times far worse than exponential!
• More bad news: there are provably

noncomputable (undecidable) problems
– There are no (and there will not ever be!!!)

algorithms to solve these problems

4/2/2019 EECS 3101 27

Proving NP-completeness: the start…

• The World’s first NP-complete problem
• SAT is NP-complete (Cook-Levin, 196x)

4/2/2019 EECS 3101 28

Proving NP-Completeness (2)

• Each NPC problem’s faith is tightly coupled to all
the others (complete set of problems)

• Finding a polynomial time algorithm for one
NPC problem would automatically yield a
polynomial time algorithm for all NP problems

• Proving that one NP-complete problem has an
exponential lower bound woud automatically
proove that all other NP-complete problems
have exponential lower bounds

4/2/2019 EECS 3101 29

NP-Completeness (3)

• How can we prove such a statement?
• Polynomial time reduction!

– given two problems
– it is an algorithm running in polynomial time that

reduces one problem to the other such that
• given input X to the first and asking for a yes/no

answer
• we transform X into input Y to the second problem

such that its answer matches the answer of the first
problem

4/2/2019 EECS 3101 30

Reduction Example

• Reduction is a general technique for
showing that one problem is harder
(easier) than another
– For problems A and B, we can often show:

if A can be solved efficiently, then so can B
– In this case, we say B reduces to A (B is

"easier" than A, or, B cannot be ”worse”
than A)

4/2/2019 EECS 3101 31

Reduction Example (2)

• SAT reduces to CLIQUE
– Given any input to SAT, we create a corresponding

input to CLIQUE that will help us solve the original
SAT problem

– Specifically, for a SAT formula with K clauses, we
construct a CLIQUE input that has a clique of size
K if and only if the original Boolean formula is
satisfiable

– If we had an efficient algorithm for CLIQUE, we
could apply our transformation, solve the
associated CLIQUE problem, and obtain the
yes/no answer for the original SAT problem

4/2/2019 EECS 3101 32

Reduction Example (3)

• SAT reduces to CLIQUE
– Associate a person to each variable

occurrence in each clause

4/2/2019 EECS 3101 33

Reduction Example (4)

• SAT reduces to CLIQUE
– Associate a person to each

variable occurrence in each
clause

– ”Two people” know each other
except if:

• they come from the same clause
• they represent t and t’ for some

variable t

4/2/2019 EECS 3101 34

Reduction Example (5)

• SAT reduces to CLIQUE
– Two people know each other except if:

• they come from the same clause
• they represent t and t’ for some variable t

– Clique of size 4 ⇒ satisfiable
assignment

• set variable in clique to ”true”
• (x, y, z) = (true, true, false)

4/2/2019 EECS 3101 35

Reduction Example (6)

• SAT reduces to CLIQUE
– Two people know each other except if:

• they come from the same clause
• they represent t and t’ for some variable t

– Clique of size 4 ⇒ satisfiable assignment
– Satisfiable assignment ⇒ clique of size 4

• (x, y, z) = (false, false, true)
• choose one true literal from

each clause

4/2/2019 EECS 3101 36

CLIQUE is NP-complete

• CLIQUE is NP-complete
– CLIQUE is in NP
– SAT is in NP-complete
– SAT reduces to CLIQUE

• Hundreds of problems can be shown to
be NP-complete that way…

4/2/2019 EECS 3101 37

Summary

• Thousands of problems have been proved to
be NP-complete
– ”at least as hard as any other problem in NP”
– If you find a polynomial time solution to any NP-

complete problem, P=NP
• They are believed to be intractable (i.e., no

polynomial time algorithms exist)
• Since this has not been proved, it is possible

that P=NP.
• In real life one looks for an approximation

algorithm or a different problem formulation...

	Intractability
	Traveling Salesman Problem
	TSP Algorithms
	Reasonable vs. Unreasonable
	Reasonable vs. Unreasonable
	Reasonable vs. Unreasonable
	Counterpoints?
	Coloring Problem (COLOR)
	Coloring Problem (2)
	Coloring Problem (3)
	Determining Truth (SAT)
	Determining Truth (SAT)
	CLIQUE
	P
	P(2)
	Short Certificates
	Short Certificates (2)
	On Magic Coins and Oracles
	NP
	NP (2)
	NP-Completeness
	The Main Question
	The Main Question (2)
	The Main Question (3)
	Dealing with NP-Completeness
	The Big Picture
	Proving NP-completeness: the start…
	Proving NP-Completeness (2)
	NP-Completeness (3)
	Reduction Example
	Reduction Example (2)
	Reduction Example (3)
	Reduction Example (4)
	Reduction Example (5)
	Reduction Example (6)
	CLIQUE is NP-complete
	Summary

