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Intractability

• Tractable and intractable problems
– What is a ”reasonable” running time? 
– NP problems, examples
– NP-complete problems and polynomial 

reducability
• There are many practically important problems that 

have not yielded algorithms with sub-exponential 
worst case running time even with years of effort. 
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Traveling Salesman Problem

• A traveling salesperson needs to visit n cities
• Is there a route of at most d length? (decision 

problem)
– Optimization-version asks to find a shortest cycle 

visiting all vertices once in a weighted graph
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TSP Algorithms

• Naive solutions take n! time in worst-case, 
where n is the number of edges of the graph

• No polynomial-time algorithms are known
– TSP is an NP-complete problem

• Longest Path problem between A and B in a 
weighted graph is also NP-complete 
– Remember the running time for the shortest path 

problem 
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Reasonable vs. Unreasonable
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Reasonable vs. Unreasonable
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Reasonable vs. Unreasonable

• ”Good”, reasonable algorithms
– algorithms bound by a polynomial function nk

– Tractable problems
• ”Bad”, unreasonable algorithms

– algorithms whose running time is above nk

– Intractable problems

intractable 
problems

tractable 
problems

problems not admitting 
reasonable algorithms

problems admitting reasonable 
(polynomial-time) algorithms
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Counterpoints?

• Computers become faster every day
– insignificant (a constant) compared to exp. 

running time
• Maybe the TSP is just one specific 

problem, we could simply ignore?
– the TSP falls into a category of problems 

called NPC (NP complete) problems 
(~1000 problems)

– all admit unreasonable solutions 
– not known to admit reasonable ones…
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Coloring Problem (COLOR)

• 3-color
– given a planar map, can it be colored using 

3 colors so that no adjacent regions have 
the same color

Find an error! =>
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Coloring Problem (2)

NO instance
Impossible to 3-color Nevada 
and bordering states!
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Coloring Problem (3)

• Any map can be 4-colored
• Maps that contain no points that are the 

junctions of an odd number of states 
can be 2-colored

• No polynomial algorithms are known to 
determine whether a map can be 3-
colored – it’s an NP-complete problem
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Determining Truth (SAT)

• Determine the truth or falsity of logical 
sentences in a simple logical formalism called 
propositional calculus

• Using the logical connectives (&-and, ∨-or, ~-
not, →-implies) we compose expressions such 
as the following
~(E → F) & (F ∨ (D → ~E))

• The algorithmic problem calls for determining 
the satisfiability of such sentences
– e.g., E = true, D and F = false
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Determining Truth (SAT)

 Exponential time algorithm on n = the number 
of distinct elementary assertions (Θ(2n))

 Best known solution, problem is in NP-complete 
class!
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CLIQUE

• Given n people and their pairwise 
relationships, is there a group of s 
people such that every pair in the 
group knows each other
– people: a, b, c, …, k
– friendships: (a,e), (a,f),…
– clique size: s = 4?
– YES, {b, d, i, h} is a 

certificate!
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P

• Definition of P:
– Set of all decision problems solvable in polynomial 

time on a deterministic Turing machine
• Examples:

– SHORTEST PATH: Is the shortest path between u
and v in a graph shorter than k?

– RELPRIME: Are the integers x and y relatively 
prime?

• YES: (x, y) = (34, 39).
– MEDIAN: Given integers x1 , …, xn , is the median 

value < M?
• YES: (M, x1 , x2 , x3 , x4 , x5 ) = (17, 2, 5, 17, 22, 104)
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P(2)

• P is the set of all decision problems 
solvable in polynomial time on REAL
computers.
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Short Certificates

• To find a solution for an NPC problem, we 
seem to be required to try out exponential 
amounts of partial solutions

• Failing in extending a partial solution requires 
backtracking

• However, once we found a solution, 
convincing someone of it is easy, if we keep a 
proof, i.e., a certificate

• The problem is finding an answer 
(exponential), but not verifying a potential 
solution (polynomial)
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Short Certificates (2)
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On Magic Coins and Oracles

• Assume we use a magic coin in the backtracking 
algorithm
– whenever it is possible to extend a partial solutions in 

> 1 ways, we toss a magic coin (next city, next truth 
assignment, etc.)

– the outcome of this ”act” determines further actions –
we use magical insight, supernatural powers!

• Such algorithms are termed ”non-deterministic”
– they guess which option is better, rather than 

employing some deterministic procedure to go 
through the alternatives
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NP

• Definition of NP:
– Set of all decision problems solvable in polynomial 

time on a NONDETERMINISTIC Turing machine
– Definition important because it links many 

fundamental problems
• Useful alternative definition

– Set of all decision problems with efficient verification 
algorithms

• efficient = polynomial number of steps on deterministic TM
– Verifier: algorithm for decision problem with extra 

input
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NP (2)

• NP = set of decision problems with 
efficient verification algorithms

• Why doesn’t this imply that all problems 
in NP can be solved efficiently?
– BIG PROBLEM: need to know certificate 

ahead of time
• real computers can simulate by guessing all 

possible certificates and verifying
• naïve simulation takes exponential time 

unless you get "lucky"
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NP-Completeness

• Informal definition of NP-hard:
– A problem with the property that if it can be 

solved efficiently, then it can be used as a 
subroutine to solve any other problem in 
NP efficiently

• NP-complete problems are NP 
problems that are NP-hard
– ”Hardest computational problems” in NP
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The Main Question

• Does P = NP? 
– Is the original DECISION problem as easy as 

VERIFICATION?
• Most important open problem in theoretical 

computer science. Clay institute of mathematics 
offers one-million dolar prize!
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The Main Question (2)

• If P=NP, then:
– Efficient algorithms for 3- COLOR, TSP, and 

factoring.
– Cryptography is impossible on  conventional 

machines
– Modern banking systems will collapse

• If no, then:
– Can’t hope to write efficient algorithm for TSP

• see NP- completeness
– But maybe efficient algorithm still exists for testing 

the primality of a number – i.e., there are some 
problems that are NP, but not NP-complete
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The Main Question (3)

• Probably no, since:
– Thousands of researchers have spent four 

decades in search of polynomial algorithms 
for many fundamental NP-complete 
problems without success

– Consensus opinion: P ≠ NP
• But maybe yes, since:

– No success in proving P ≠ NP either
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Dealing with NP-Completeness

• Hope that a worst case doesn’t occur
– Complexity theory deals with worst case behavior. 

The instance(s) you want to solve may be "easy"
• TSP where all points are on a line or circle
• 13,509 US city TSP problem solved (Cook et. al., 1998)

• Change the problem
– Develop a heuristic, and hope it produces a good 

solution. 
– Design an approximation algorithm: algorithm that 

is guaranteed to find a high- quality solution in 
polynomial time

• active area of research, but not always possible

• Keep trying to prove P = NP.
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The Big Picture

• It is not known whether NP problems are 
tractable or intractable

• But, there exist provably intractable 
problems
– Even worse – there exist problems with 

running times far worse than exponential!
• More bad news: there are provably 

noncomputable (undecidable) problems
– There are no (and there will not ever be!!!) 

algorithms to solve these problems
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Proving NP-completeness: the start…

• The World’s first NP-complete problem
• SAT is NP-complete (Cook-Levin, 196x)
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Proving NP-Completeness (2)

• Each NPC problem’s faith is tightly coupled to all 
the others (complete set of problems)

• Finding a polynomial time algorithm for one 
NPC problem would automatically yield a 
polynomial time algorithm for all NP problems

• Proving that one NP-complete problem has an 
exponential lower bound woud automatically 
proove that all other NP-complete problems 
have exponential lower bounds
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NP-Completeness (3)

• How can we prove such a statement?
• Polynomial time reduction!

– given two problems
– it is an algorithm running in polynomial time that 

reduces one problem to the other such that
• given input X to the first and asking for a yes/no 

answer
• we transform X into input Y to the second problem 

such that its answer matches the answer of the first 
problem
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Reduction Example

• Reduction is a general technique for 
showing that one problem is harder 
(easier) than another
– For problems A and B, we can often show: 

if A can be solved efficiently, then so can B
– In this case, we say B reduces to A (B is 

"easier" than A, or, B cannot be ”worse” 
than A)
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Reduction Example (2)

• SAT reduces to CLIQUE
– Given any input to SAT, we create a corresponding 

input to CLIQUE that will help us solve the original 
SAT problem

– Specifically, for a SAT formula with K clauses, we 
construct a CLIQUE input that has a clique of size 
K if and only if the original Boolean formula is 
satisfiable

– If we had an efficient algorithm for CLIQUE, we 
could apply our transformation, solve the 
associated CLIQUE problem, and obtain the 
yes/no answer for the original SAT problem
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Reduction Example (3)

• SAT reduces to CLIQUE
– Associate a person to each variable 

occurrence in each clause
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Reduction Example (4)

• SAT reduces to CLIQUE
– Associate a person to each 

variable occurrence in each 
clause

– ”Two people” know each other 
except if:

• they come from the same clause
• they represent t and t’ for some 

variable t
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Reduction Example (5)

• SAT reduces to CLIQUE
– Two people know each other except if:

• they come from the same clause
• they represent t and t’ for some variable t

– Clique of size 4 ⇒ satisfiable 
assignment

• set variable in clique to ”true”
• (x, y, z) = (true, true, false)
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Reduction Example (6)

• SAT reduces to CLIQUE
– Two people know each other except if:

• they come from the same clause
• they represent t and t’ for some variable t

– Clique of size 4 ⇒ satisfiable assignment
– Satisfiable assignment ⇒ clique of size 4

• (x, y, z) = (false, false, true)
• choose one true literal from 

each clause
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CLIQUE is NP-complete

• CLIQUE is NP-complete
– CLIQUE is in NP
– SAT is in NP-complete
– SAT reduces to CLIQUE

• Hundreds of problems can be shown to 
be NP-complete that way…



4/2/2019 EECS 3101 37

Summary

• Thousands of problems have been proved to 
be NP-complete
– ”at least as hard as any other problem in NP”
– If you find a polynomial time solution to any NP-

complete problem, P=NP
• They are believed to be intractable (i.e., no 

polynomial time algorithms exist)
• Since this has not been proved, it is possible 

that P=NP.
• In real life one looks for an approximation 

algorithm or a different problem formulation...
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