
EECS 3101M W 19

EECS 3101 M: Design and Analysis of

Algorithms

Suprakash Datta
Office: LAS 3043

Course page: http://www.eecs.yorku.ca/course/3101M
Also on Moodle

http://www.eecs.yorku.ca/course/3101M


EECS 3101M W 19

Analysis of FindMax

Analysis of FindMax

Find-max(A)

1 max = A[1]
2 for j = 2 to A. length
3 if max < A[j ]
4 max = A[j ]
5 return max

line Cost Times
1 c1 1
2 c2 n
3 c3 n − 1
4 c4 0 ≤ k ≤ n − 1
5 c5 1

Best Case: k = 0
Worst Case: k = n − 1
Average Case: ?



EECS 3101M W 19

Analysis of FindMax

Best/Worst/Average Case Analysis



EECS 3101M W 19

Analysis of FindMax

Best/Worst/Average Case Analysis - 2

The running time of an algorithm typically grows with the
input size.

Best Case: Not very informative

Average Case: Often very useful, but hard to determine

Worst Case: Easier to analyze. Crucial in applications like

Games
Finance
Robotics



EECS 3101M W 19

Analysis of FindMax

Analysis of FindMax - Continued

Find-max(A)

1 max = A[1]
2 for j = 2 to A. length
3 if max < A[j ]
4 max = A[j ]
5 return max

line Cost Times
1 c1 1
2 c2 n
3 c3 n − 1
4 c4 0 ≤ k ≤ n − 1
5 c5 1

Running time (worst-case): c1 + c5 − c3 − c4 + (c2 + c3 + c4)n
Running time (best-case): c1 + c5 − c3 + (c2 + c3)n



EECS 3101M W 19

Analysis of FindMax

Simplifying Running Times

Note that the worst-case time of
c1 + c5 − c3 − c4 + (c2 + c3 + c4)n is

Complex

Not useful as the ci ’s are machine dependent

A simpler expression: C + Dn [still complex].

Want to say this is Linear, i.e., ≈ n

Q: How/why can we throw away the coefficient D and the
lower order term C?



EECS 3101M W 19

Analysis of FindMax

Simplifying Running Times - Rationale

Discarding lower order terms: We are interested in large n
– cleaner theory, usually realistic.

Discarding coefficients (multiplicative constants): the
coefficients are machine dependent

Caveat: remember these assumptions when interpreting
results! We will not get:

Exact run times

Comparison for small instances

Small differences in performance



EECS 3101M W 19

Analysis of FindMax

Analysis of FindMax - Summary

Last expression: C + Dn written as Θ(n)

Also called linear time

Question: Can we do better?

Approach: reason about the problem not the algorithm;
show that any algorithm for the problem must have worst case
running time Ω(n)
i.e.
for any algorithm for this problem, for each n > 0, there exists
an input that make the algorithm take Ω(n) time



EECS 3101M W 19

Lower Bounds for finding the Maximum

Lower Bounds

Consider only comparison-based algorithms; show any
such algorithm must use Ω(n) comparisons in the worst
case

Note that the number of comparisons is a lower bound on
the running time of an algorithm

Warning: we must reason about all algorithms, so we
have to be careful not to assume anything about how the
algorithm proceeds



EECS 3101M W 19

Lower Bounds for finding the Maximum

Proof of Lower Bound

Claim: Any comparison-based algorithm for finding the
maximum of n distinct elements must use at least n − 1
comparisons.

Proof:
If x , y are compared and x > y , call x the winner, y the
loser.
Any key that is not the maximum must have lost at least
one comparison. WHY?
Each comparison produces exactly one loser and at most
one NEW loser.
Therefore, at least n − 1 comparisons have to be made.



EECS 3101M W 19

Lower Bounds for finding the Maximum

Observations

We proved a claim about ANY algorithm that only uses
comparisons to find the maximum. Specifically, we made no
assumptions about

Nature of algorithm

Order or number of comparisons

Optimality of algorithm

Whether the algorithm is reasonable – e.g. it could be a
very wasteful algorithm, repeating the same comparisons


	Analysis of FindMax
	Lower Bounds for finding the Maximum

