EECS 3101M W 19

EECS 3101 M: Design and Analysis of
Algorithms

Suprakash Datta
Office: LAS 3043

Course page: http://www.eecs.yorku.ca/course/3101M
Also on Moodle

http://www.eecs.yorku.ca/course/3101M

EECS 3101M W 19

Lower Bounds

Lower Bounds - Intuition

@ Can we beat the Q(nlog n) lower bound for sorting?

@ A: In general no, but in some special cases YES!

@ Ch 7: Sorting in linear time

@ We will prove the Q(nlog n) lower bound.

EECS 3101M W 19
Lower Bounds - Details

e What are we counting?
— Running time? Memory? Number of times a specific

operation is used?
e What (if any) are the assumptions?

@ Is the model general enough?
Here we are interested in lower bounds for the WORST CASE.
So we will prove (directly or indirectly):
for any algorithm for a given problem, for each n > 0, there
exists an input that make the algorithm take Q(f(n)) time.
Then f(n) is a lower bound on the worst case running time.

EECS 3101M W 19

Lower Bounds

Comparison-based Algorithms

@ The algorithm only uses the results of comparisons, not
values of elements (*)

@ Very general — does not assume much about what type of
data is being sorted

@ However, other kinds of algorithms are possible!

@ In this model, it is reasonable to count #comparisons.
Note that the #comparisons is a lower bound on the
running time of an algorithm.

(*) If values are used, lower bounds proved in this model are
not lower bounds on the running time.

EECS 3101M W 19

Lower Bounds

Lower Bound: Observations

@ Lower bounds are rarely simple: there are virtually no
known general techniques.

@ So we must try ad hoc methods for each problem.

@ We proved a lower bound on finding the maximum

@ Sorting lower bounds:

o Trivial: Q(n) — every element must be in a comparison

o Best possible result — Q(nlog n) comparisons, since we
already know several O(nlog n) sorting algorithms

o Difficulty: how do we reason about all possible
comparison-based sorting algorithms?

EECS 3101M W 19

The Decision Tree Model

Assumptions:
@ All numbers are distinct

@ All comparisons have form a; < a; (since
a; < aj,a; < aj,a; > a;, a; > a; are equivalent)

Decision tree structure

e Full binary tree

@ Ignore control, movement, and all other operations, just
use comparisons.

@ suppose three elements (ay, ap, a3) with instance (6,8, 5).

EECS 3101M W 19

Lower Bounds

The Decision Tree Model - Example

INSERTION-SORT(A)
1 forj = 2 to A.length

2 key = A[j]

3 / Insert A[j] into the sorted sequence A[l.. — 1].
4 i=j—1

5 while / > 0 and A[i] > key

6 Ali +1] = Al

7 Ir=1i—-1

8 Ali + 1] = key

EECS 3101M W 19

Lower Bounds

Insertion Sort: Decision Tree

A[T]A[3]A[2] A[3]A[1]A[2] A[2]A[3]A[1] A[3]A[2]A[1]

EECS 3101M W 19

Lower Bounds

Insertion Sort: Another view

(<13.2>] [(<3.1.2>] (<23.1>] [<3.2.1>]

Internal node i/ : j indicates comparison between a; and a;.
Leaf node (p1, p2, p3) indicates ordering a,, < ap, < a,,
Path of bold lines indicates sorting path for (6,8,5). There
are total 3! = 6 possible permutations (paths).

EECS 3101M W 19

Lower Bounds

The Decision Tree Model - Summary

Only consider comparisons
@ Each internal node = 1 comparison

@ Start at root, make the first comparison
o if the outcome is <, take the LEFT branch

o if the outcome is >, take the RIGHT branch
Repeat at each internal node

Each LEAF represents ONE correct ordering

EECS 3101M W 19

Lower Bound on Sorting

@ Claim: The decision tree must have at least n! leaves.
WHY?

@ worst case number of comparisons = the height of the
decision tree

@ Claim: Any comparison sort in the worst case needs
Q(nlog n) comparisons

@ Suppose height of a decision tree is h, number of paths
(i.e., permutations) is n!

@ Since a binary tree of height h has at most 2" leaves,
n < 2h

@ So h>lgn! € Q(nlgn)

EECS 3101M W 19

Lower Bounds

Lower Bounds: Check your understanding

@ Can you prove that any algorithm that searches for an
element in a sorted array of size n must have running
time Q(Ig n)?

	Lower Bounds

