EECS 3101 M: Design and Analysis of Algorithms

Suprakash Datta

Office: LAS 3043

Course page: http://www.eecs.yorku.ca/course/3101M

Lower Bounds - Intuition

- Can we beat the $\Omega(n \log n)$ lower bound for sorting?
- A: In general no, but in some special cases YES!
- Ch 7: Sorting in linear time
- We will prove the $\Omega(n \log n)$ lower bound.

Lower Bounds - Details

- What are we counting?
 - Running time? Memory? Number of times a specific operation is used?
- What (if any) are the assumptions?
- Is the model general enough?

Here we are interested in lower bounds for the WORST CASE. So we will prove (directly or indirectly):

for any algorithm for a given problem, for each n > 0, there exists an input that make the algorithm take $\Omega(f(n))$ time. Then f(n) is a lower bound on the worst case running time.

Comparison-based Algorithms

- The algorithm only uses the results of comparisons, not values of elements (*)
- Very general does not assume much about what type of data is being sorted
- However, other kinds of algorithms are possible!
- In this model, it is reasonable to count #comparisons.
 Note that the #comparisons is a lower bound on the running time of an algorithm.
- (*) If values are used, lower bounds proved in this model are not lower bounds on the running time.

Lower Bound: Observations

- Lower bounds are rarely simple: there are virtually no known general techniques.
- So we must try ad hoc methods for each problem.
- We proved a lower bound on finding the maximum
- Sorting lower bounds:
 - Trivial: $\Omega(n)$ every element must be in a comparison
 - Best possible result $\Omega(n \log n)$ comparisons, since we already know several $O(n \log n)$ sorting algorithms
 - Difficulty: how do we reason about all possible comparison-based sorting algorithms?

The Decision Tree Model

Assumptions:

- All numbers are distinct
- All comparisons have form $a_i \leq a_j$ (since $a_i < a_j, a_i \leq a_j, a_i \geq a_j, a_i > a_j$ are equivalent)

Decision tree structure

- Full binary tree
- Ignore control, movement, and all other operations, just use comparisons.
- suppose three elements $\langle a_1, a_2, a_3 \rangle$ with instance $\langle 6, 8, 5 \rangle$.

The Decision Tree Model - Example

```
INSERTION-SORT(A)

1 for j = 2 to A. length

2 key = A[j]

3 \# Insert A[j] into the sorted sequence A[1..j-1].

4 i = j-1

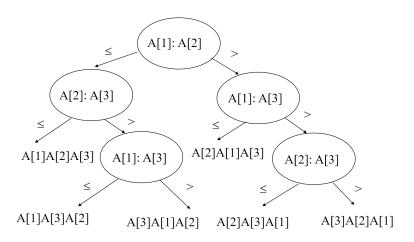
5 while i > 0 and A[i] > key

6 A[i+1] = A[i]

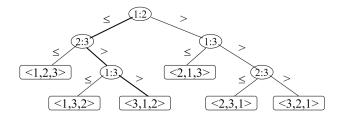
7 i = i-1

8 A[i+1] = key
```

Insertion Sort: Decision Tree



Insertion Sort: Another view



Internal node i:j indicates comparison between a_i and a_j . Leaf node $\langle p_1, p_2, p_3 \rangle$ indicates ordering $a_{p_1} \leq a_{p_2} \leq a_{p_3}$ Path of bold lines indicates sorting path for $\langle 6, 8, 5 \rangle$. There are total 3! = 6 possible permutations (paths).

The Decision Tree Model - Summary

- Only consider comparisons
- ullet Each internal node =1 comparison
- Start at root, make the first comparison
 - if the outcome is \leq , take the LEFT branch
 - if the outcome is >, take the RIGHT branch
- Repeat at each internal node
- Each LEAF represents ONE correct ordering

Lower Bound on Sorting

- Claim: The decision tree must have at least n! leaves.
 WHY?
- worst case number of comparisons = the height of the decision tree
- Claim: Any comparison sort in the worst case needs $\Omega(n \log n)$ comparisons
- Suppose height of a decision tree is h, number of paths (i.e., permutations) is n!
- Since a binary tree of height h has at most 2^h leaves, $n \le 2^h$
- So $h \ge \lg n! \in \Omega(n \lg n)$

Lower Bounds: Check your understanding

• Can you prove that any algorithm that searches for an element in a sorted array of size n must have running time $\Omega(\lg n)$?