
EECS 3101M W 19

EECS 3101 M: Design and Analysis of

Algorithms

Suprakash Datta
Office: LAS 3043

Course page: http://www.eecs.yorku.ca/course/3101M
Also on Moodle

http://www.eecs.yorku.ca/course/3101M


EECS 3101M W 19

Linear-time Sorting Algorithms

Linear-time Sorting Algorithms

The Ω(n log n) lower bound is for comparison-based
sorting algorithms

We can do better than the lower bound if the algorithm is
not comparison-based

We can sort using information other than comparisons
between data items if we restrict the scope of the problem

For some restricted scenarios, we can sort in worse-case
linear time



EECS 3101M W 19

Linear-time Sorting Algorithms

Bucket Sort

Bucket Sort

Suppose all keys come from a finite interval, say [0, 1)

Suppose you have 10 keys

We can define buckets for ranges, e.g.
[0, 0.1), [0.1, 0.2), . . . , [0.9, 1)

Insert keys in appropriate bucket

If input is random and uniformly distributed, expected
number of keys in each bucket is 1.



EECS 3101M W 19

Linear-time Sorting Algorithms

Bucket Sort

Bucket Sort - 2

Suppose all keys come from a finite interval, say [0, 1)

Suppose you have n keys

Divide [0, 1) into n equal-sized subintervals (buckets)

Insert the n numbers into buckets

Sort numbers in each bucket (insertion sort as default).

Then go through buckets in order, listing elements

If input is random and uniformly distributed, expected run
time is Θ(n).



EECS 3101M W 19

Linear-time Sorting Algorithms

Bucket Sort

Bucket Sort - 3

So given A[1..n], create new array B of length n

Insert A[i ] into B[bnA[i ]c]



EECS 3101M W 19

Linear-time Sorting Algorithms

Bucket Sort

Bucket Sort: Properties and Extensions

Stable Sort

Keys must be numbers – since they are used to generate
array indices

Extension: Set of fixed keys like the set of names of 50
US states – Sort the keys and give each key its unique
bucket. Insert each item into the bracket corresponding
to its key

What if input numbers are NOT uniformly distributed?

What if the distribution is not known a priori?

Can we get worst-case linear time algorithms?



EECS 3101M W 19

Linear-time Sorting Algorithms

Counting Sort

Counting Sort

applies when the keys come from a finite (and preferably
small) set, e.g., are integers in the range [0 . . . k − 1], for
some fixed integer k

We can then create an array V [0. . . k − 1] and use it to
count the number of elements with each key 0 . . . k − 1

Then each input element can be placed in exactly the
right place in the output array in constant time

How to do this?

Determine the number of elements less than x , for each
input x

Place x directly in its position



EECS 3101M W 19

Linear-time Sorting Algorithms

Counting Sort

Counting Sort - pseudocode

CountingSort(A,B , k)

1 for i = 0 to k
2 C [i ] = 0
3 for j = 1 to A.length
4 C [A[j ]] = C [A[j ]] + 1
5 // C[i] contains number of elements equal to i.
6 for i = 1 to k
7 C [i ] = C [i ] + C [i − 1]
8 // C[i] contains number of elements ≤ i
9 for j = A.length downto 1

10 B[C [A[j ]]] = A[j ]
11 C [A[j ]] = C [A[j ]]− 1



EECS 3101M W 19

Linear-time Sorting Algorithms

Counting Sort

Counting Sort: Analysis and Comments

Total cost is Θ(k + n), suppose k = O(n), then total cost
is Θ(n).

So it beats the Ω(n log n) lower bound

Counting Sort is stable

Q: can counting sort be used to sort large integers
efficiently?



EECS 3101M W 19

Linear-time Sorting Algorithms

Radix Sort

Radix Sort

Input: An array of n numbers, each containing d digits

Output: Sorted array

Approach: Each digit (column) can be sorted (e.g., using
Counting Sort)

Q: Which digit to start from?

Generalization: Each “digit” between 0 and k − 1 (inclusive)



EECS 3101M W 19

Linear-time Sorting Algorithms

Radix Sort

Radix Sort - 2

Sort the numbers using the least significant digit

Sort by the next least significant digit

Are the last 2 columns sorted?

Generalize: after j iterations, the last j columns are sorted



EECS 3101M W 19

Linear-time Sorting Algorithms

Radix Sort

Radix Sort - 3



EECS 3101M W 19

Linear-time Sorting Algorithms

Radix Sort

Radix Sort - 4

RadixSort(A, d)

1 for i = 1 to d
2 use a stable sort to sort A on digit i

Analysis: Given n d-digit numbers where each digit takes
on up to k values, Radix-Sort sorts these numbers
correctly in Θ((d(n + k)) time.

Loop invariant: Before iteration i , the keys have been
correctly stable-sorted with respect to the i − 1
least-significant digits


	Linear-time Sorting Algorithms
	Bucket Sort
	Counting Sort
	Radix Sort


