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Greedy Algorithms (Ch. 16)

Basic idea:

@ In order to get an optimal solution, just keep grabbing
what looks best.

e No backtracking (reversing earlier choices) allowed
@ Local algorithm; often produces globally optimal solutions

o Typically the algorithm is simple. The proof that a greedy
algorithm produces an optimal solution may be harder.

“Every two year old knows the greedy algorithm”
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Greedy Algorithms

Greedy Algorithms - outline

In a loop:

@ grab the next best object

e if it conflicts with committed objects, or fulfills no new
requirements: Reject this object

o else: Commit to it.
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Greedy Algorithms

Example

@ Making change problem: Find the minimum number of
coins (i.e., quarters, dimes, nickels, and pennies) that
total to a given amount.

@ Greedy Algorithm: Keep grabbing the largest coin that
keeps the solution cost less than or equal to the given
amount.

e E.g.: Make change for 71 cents
Solution: A subset of the coins that total 71 cents (25,
25, 10, 10, 1)
Cost of Solution: The number of objects in solution or
the sum of the costs of objects (5)
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Greedy Algorithms

The greedy algorithm does not always work

@ Problem: Find the minimum number of 4, 3, and 1 cent
coins to make up 6 cents.

@ Greedy solution: (4, 1, 1) cost 3
Optimal Solution: (3,3) cost 2

@ Lessons
e Not all problems admit greedy algorithms.
e For those that do, all greedy algorithms do not work.
e The proof that a greedy algorithm works is subtle but
essential.
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Proving optimality of greedy algorithms
@ Loop Invariant: There is at least one optimal solution

consistent with the choices made so far

@ Initially no choices have been made and hence all optimal
solutions are consistent with these choices.

@ It is often easier to carry out the proof by contradiction.

@ For denominations 1,5,10,25 cents, prove optimality for
amount C cents.
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Greedy Algorithms

Relationship with Dynamic Programming

@ In DP, we do not know a priori what the best choice is

@ For greedy algorithms we believe we know a best choice
@ The proof of optimality is really a proof of the above claim
@ This is why the book covers greedy after DP

@ Optimal substructure and greedy choice are properties of
the problem and a particular formulation .... if these
properties hold, we know that DP and greedy algorithms
(respectively) will be optimal for a problem
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Making change:the greedy algorithm is optimal

e Consider solutions from greedy algorithm Sol/(G) and that
from optimal So/(O). Sort both in decreasing order.

@ Look at first place (k) where they differ. So/(G) MUST
contain a coin of higher denomination

o Case 1: Sol(G) has a 5 c coin, Sol(O) does not. Sol(O)
must make 5 ¢ with 1 c; cannot be optimal.

o Case 2: Sol/(G) has a 10 c coin, Sol(O) does not. Must
make 10 ¢ with 5 c and 1 c. Sol(O) cannot be optimal.

o Case 3: Sol(G) has a 25 c coin, Sol(O) does not. If
Sol(G) has 2 or more 25 c coins, Sol(O) must make 50
cents with 10c, 5¢, 1c; cannot be optimal. Else Sol/(O)
must use 1 or 2 or 3 or more 10c; in each case, Sol(O)
must be suboptimal.
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Greedy Algorithms

Making change:the greedy algorithm is optimal - 2

Q: How is this consistent with “LI: There is at least one
optimal solution consistent with the choices made so far.”

@ A: Take a different view of what we have done

@ We proved that the next coin of Sol/(G) agrees with that
of some Sol(O)

@ More precisely, we proved that if no solution in Sol(O)
agrees with Sol(G), then Sol(O) cannot be optimal.
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Another example: (Continuous) Knapsack problem

Problem: Given n commodities, with total values v; dollars
and weight w; kg, and a knapsack that can carry maximum
weight K, to put in the knapsack a set of items that maximize
total value. You can take arbitrary fractions of any item.
Greedy algorithm:

@ Sort in decreasing order of v;/w;
o Fill knapsack greedily

o Correctness: Compare Sol(G) with Sol(O), with both
solutions sorted in decreasing order of v;/w;. If they differ,
then prove that by replacing the object in Sol/(O) with
the object in Sol(G), we violate the optimality of Sol/(O).
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Greedy Algorithms

More examples

@ Huffman codes

o greedy scheduling
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Data Compression

@ When can you compress data?
e Key question: Do you allow information to be lost?

@ Answer: depends on the application:
Music/movies: small loss ok
Text/data file transmission /storage: no loss permitted

@ Lossy compression: uses signal processing techniques
- Used in computer vision, image and speech processing
- Utilizes the fact that some part of the data (signal) can
be discarded without perceptible quality loss

@ Lossless compression: Must ve able to reconstruct the
exact data
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Greedy Algorithms

Lossless Data Compression

@ Q: if you cannot throw away any “‘data”, how can you
reduce its size?

@ Answer: by removing redundancy in the data

e E.g.: My daughter sends me an sms “where are you?"
| could answer “l am at York”, “at York”, “York"

@ is this lossless compression?

@ Aside: What about the obvious redundancy in language?
(utilized by sms-language, e.g. | Iv u, wt 4 me ...)
Why /when is redundancy useful?
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Lossless Data Compression - 2

Assume: message is given, and cannot be altered

@ Q: How can you reduce the size?
@ Answer: variable length encodings

@ If there are k characters in the alphabet, each character
could be encoded using [log k| bits (fixed length
encoding),
or some characters could use 1 bit, some 2 bits, etc.

@ ldea: the more frequent the letter, the shorter its
encoding.

@ Tradeoff: ease of parsing
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Greedy Algorithms

Fixed and variable length codes

a b c d e iz
Frequency (in thousands) 45 13 12 16 9 5
Fixed-length codeword 000 00t 010 011 2100 10!
Variable-length codeword 0 101 100 111 1101 1100

Figure 16.3 A character-coding problem. A data file of 100,000 characters contains only the char-
acters a—f, with the frequencies indicated. If each character is assigned a 3-bit codeword, the file
can be encoded in 300,000 bits. Using the variable-length code shown, the file can be encoded in
224,000 bits.
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Greedy Algorithms

Fixed and variable length codes

(a) (b)

Figure 16.4 Trees corresponding to the coding schemes in Figure 16.3. Each leaf is labeled with
a character and its frequency of occurrence. Each internal node is labeled with the sum of the fre-
quencies of the leaves in its subtree. (a) The tree corresponding to the fixed-length code a = 000
£ = 101. (b) The tree corresponding to the optimal prefix code a =0, b = 101, .. ., £ =1100.
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Huffman codes

e Want unique parse trees (PREFIX codes)

@ Start with each character being a node, and set its weight
to be its frequency

o Greedy strategy:

select the two least weight nodes and make them children
of the tree.

Replace the nodes with a new node with the sum of the
weights
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Greedy Algorithms

Huffman codes - algorithm

HUFFMAN(C)
n <« |C|
0« C
fori < 1ton —1
do allocate a new node =
leftlz] < x < EXTRACT-MIN(Q)
right[z] < y <« EXTRACT-MIN(Q)
flz]l « flx]+ fly]
INSERT(Q, z)
return EXTRACT-MIN(Q) > Return the root of the tree.
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Greedy Algorithms

Huffman codes - Optimality

@ Next

@ Requires a bit of work
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