
EECS 3101M W 19

EECS 3101 M: Design and Analysis of

Algorithms

Suprakash Datta
Office: LAS 3043

Course page: http://www.eecs.yorku.ca/course/3101M
Also on Moodle

http://www.eecs.yorku.ca/course/3101M

EECS 3101M W 19

Graph Search Algorithms

Graphs: Exploration and Searching

Method to explore many key properties of a graph

Nodes that are reachable from a specific node v

Detection of cycles

Extraction of strongly connected components

Topological sorts

Find a path with the minimum number of edges between
two given vertices

Note: Some slides in this presentation have been adapted from
the author’s and Prof Elder’s slides.

EECS 3101M W 19

Graph Search Algorithms

Graph Search Algorithms

Depth-first Search (DFS)

Breadth-first Search (BFS)

EECS 3101M W 19

BFS

Breadth First Search

A general technique for traversing a graph

A BFS traversal of a graph G

Visits all the vertices and edges of G
Determines whether G is connected
Computes the connected components of G
Computes a spanning forest of G

BFS on a graph with |V | vertices and |E | edges takes
Θ(|V |+ |E |) time

BFS can be further extended to solve other graph
problems

Find and report a path with the minimum number of
edges between two given vertices
Cycle detection

EECS 3101M W 19

BFS

Breadth First Search - 2

In BFS exploration takes place on a level or wavefront
consisting of nodes that are all the same distance from
the source s

We can label these successive wavefronts by their
distance: L0, L1, . . .

EECS 3101M W 19

BFS

Breadth First Search - 3

Input: directed or undirected graph G = (V ,E), source
vertex s ∈ V

Output: for all v ∈ V

d [v], the shortest distance from s to v
π[v] = u, such that (u, v) is the last edge on the
shortest distance from s to v

Idea: send out search ‘wave’ from s

Keep track of progress by colouring vertices:

Undiscovered vertices are coloured white
Just discovered vertices (on the wavefront) are coloured
grey
Previously discovered vertices (behind wavefront) are
coloured black

EECS 3101M W 19

BFS

Breadth First Search - Example

EECS 3101M W 19

BFS

Breadth First Search - Example

EECS 3101M W 19

BFS

Breadth First Search - Example

EECS 3101M W 19

BFS

Breadth First Search - Algorithm

EECS 3101M W 19

BFS

BFS: Properties

Notation: Gs : connected component containing s

Property 1: BFS(G , s) visits all the vertices and edges of
Gs

Property 2: The discovery edges labeled by BFS(G , s)
form a spanning tree Ts of Gs

Property 3: For any vertex v reachable from s, the path
in the breadth first tree from s to v corresponds to a
shortest path in G

EECS 3101M W 19

BFS

BFS: Analysis

Setting/getting a vertex/edge label takes O(1) time

Vertices are enqueued if there color is white

Assuming that en- and dequeuing takes O(1) time the
total cost of this operation is O(|V |)
Adjacency list of a vertex is scanned when the vertex is
dequeued (and only then ...)

The sum of the lengths of all lists is O(|E |).
Consequently, O(|E |) time is spent on scanning them

Initializing the algorithm takes O(|V |)
Thus BFS runs in Θ(|V |+ |E |) time provided the graph
is represented by an adjacency list structure

EECS 3101M W 19

BFS

BFS Application: Shortest Unweighted Paths

Goal: To recover the shortest paths from a source node s
to all other reachable nodes v in a graph

The length of each path and the paths themselves are
returned

Notes:

There are an exponential number of possible paths

Analogous to level order traversal for trees

This problem is harder for general graphs than trees
because of cycles!

EECS 3101M W 19

DFS

Depth-first Search

A DFS traversal of a graph G

Visits all the vertices and edges of G

Determines whether G is connected

Computes the connected components of G

Computes a spanning forest of G

Find a cycle in the graph

EECS 3101M W 19

DFS

Depth-first Search - 2

DFS: similar to a classic strategy for exploring a maze

EECS 3101M W 19

DFS

Depth-first Search - Steps

We start at vertex s, tying the end of our string to the
point and painting s “visited (discovered)”. Next we label
s as our current vertex called u

Now, we travel along an arbitrary edge (u, v)

If edge (u, v) leads us to an already visited vertex v we
return to u

If vertex v is unvisited, we unroll our string, move to v ,
paint v “visited”, set v as our current vertex, and repeat
the previous steps

EECS 3101M W 19

DFS

Depth-first Search - Steps

Eventually, we will get to a point where all incident edges
on u lead to visited vertices

We then backtrack by unrolling our string to a previously
visited vertex v . Then v becomes our current vertex and
we repeat the previous steps

Then, if all incident edges on v lead to visited vertices, we
backtrack as we did before. We continue to backtrack
along the path we have traveled, finding and exploring
unexplored edges, and repeating the procedure

EECS 3101M W 19

DFS

Depth-first Search - Algorithm

Initialize – color all vertices white

Visit each and every white vertex using DFS − Visit

Each call to DFS − Visit(u) roots a new tree of the
depth-first forest at vertex u

A vertex is white if it is undiscovered

A vertex is gray if it has been discovered but not all of its
edges have been discovered

A vertex is black after all of its adjacent vertices have
been discovered (the adj. list was examined completely)

In addition to, or instead of labeling vertices with colours,
they can be labeled with discovery and finishing times.

EECS 3101M W 19

DFS

Depth-first Search - Algorithm

Time is an integer that is incremented whenever a vertex
changes state

from unexplored to discovered
from discovered to finished

These discovery and finishing times can then be used to
solve other graph problems (e.g., computing
strongly-connected components)

Two timestamps put on every vertex:

discovery time d(v) ≥ 1
finish time 1 < f (v) ≤ 2n

EECS 3101M W 19

DFS

DFS - Example

EECS 3101M W 19

DFS

DFS - Example

EECS 3101M W 19

DFS

DFS - Example

EECS 3101M W 19

DFS

DFS - Algorithm

	Graph Search Algorithms
	BFS
	DFS

