
EECS 3101M W 19

EECS 3101 M: Design and Analysis of

Algorithms

Suprakash Datta
Office: LAS 3043

Course page: http://www.eecs.yorku.ca/course/3101M
Also on Moodle

http://www.eecs.yorku.ca/course/3101M

EECS 3101M W 19

Graph Representations

Graph Representations

Edge list

Adjacency list

Adjacency matrix

EECS 3101M W 19

Graph Representations

Edge Lists

Vertex object: reference to
position in vertex sequence
Edge object: origin vertex
object, destination vertex
object, reference to position in
edge sequence
Vertex sequence: sequence of
vertex objects
Edge sequence: sequence of
edge objects

EECS 3101M W 19

Graph Representations

Adjacency Lists

Incidence sequence for each
vertex: sequence of references
to edge objects of incident
edges
Augmented edge objects:
references to associated
positions in incidence
sequences of end vertices

EECS 3101M W 19

Graph Representations

Adjacency Matrix

Edge list structure
Augmented vertex objects:
Integer key (index) associated
with vertex
2D-array adjacency array:
Reference to edge object for
adjacent vertices, null for non
nonadjacent vertices
The “old fashioned” version
just has 0 for no edge and 1 for
edge

EECS 3101M W 19

Graph Representations

Performance

EECS 3101M W 19

Minimum Spanning Trees

Minimum Spanning Trees (MST)

Undirected, connected graph G = (V ,E)

Weight function w : E → R (assigning cost or length or
other values to edges)

Spanning tree: tree that connects all vertices

Minimum spanning tree: tree T that connects all the
vertices and minimizes w(T) =

∑
(u,v)∈T w(u, v)

EECS 3101M W 19

Minimum Spanning Trees

Minimum Spanning Trees: Questions

Is DP applicable?

Is a greedy strategy applicable?

EECS 3101M W 19

Minimum Spanning Trees

MST: Optimal Substructure

Removing the edge (u, v) partitions T into T1 and T2:
w(T) = w(T1) + w(T2) + w(u, v)

We claim that T1 is the MST of G1 = (V1,E1), the
subgraph of G induced by vertices in T1.

Similarly, T2 is the MST of G2

EECS 3101M W 19

Minimum Spanning Trees

MST: Greedy Choice Property

Greedy choice property: locally optimal (greedy) choice yields
a globally optimal solution

Theorem:

Let G = (V ,E), and let S ⊆ V and

Let (u, v) be min-weight edge in G connecting S to
V − S

Then (u, v) ∈ T for some MST T of G

EECS 3101M W 19

Minimum Spanning Trees

MST: Proof of Greedy Choice Property

Let (u, v) be min-weight edge in G connecting S to V –S ;
suppose (u, v) 6∈ T

look at path from u to v in T

swap (x , y), the first edge on path from u to v in T that
crosses from S to V − S , with (u, v)

this decreases the cost of T : contradiction (T supposed
to be MST)

EECS 3101M W 19

Minimum Spanning Trees

Generic MST Algorithm

Loop invariant: before each iteration, A is a subset of
some MST

Safe edge – edge that preserves the loop invariant

EECS 3101M W 19

Minimum Spanning Trees

Generic MST Algorithm - 2

A cut respects A if no edge of A crosses the cut

Same LI: before each iteration, A is a subset of an MST

Correctness proof in Theorem 23.1 in the text

Many ways to choose cuts

EECS 3101M W 19

Prim’s ALgorithm

Prim’s Algorithm

Vertex based algorithm

Grows one tree T , one vertex at a time

Imagine a “blob” covering the portion of T already
computed

Label the vertices v outside the blob with key [v] = the
minimum weight of an edge connecting v to a vertex in
the blob, key [v] =∞, if no such edge exists

At each iteration, add the minimum weight vertex to T

EECS 3101M W 19

Prim’s ALgorithm

Prim’s Algorithm: Steps

Pseudocode on pg 634

Put all vertices in a priority queue Q with labels ∞

Remove the start vertex and set its label to 0

While Q is not empty, remove the vertex u with the
minimum label and add it to the tree;
For each neighbour v of u in Q, if w(u, v) < label [v], set
label [v] = w(u, v)

EECS 3101M W 19

Prim’s ALgorithm

Prim’s Algorithm: Illustration

EECS 3101M W 19

Prim’s ALgorithm

Prim’s Algorithm: Illustration

EECS 3101M W 19

Prim’s ALgorithm

Prim’s Algorithm: Illustration

EECS 3101M W 19

Prim’s ALgorithm

Prim’s Algorithm: Analysis

Proof of correctness on page 636

Time = O(|V |T (ExtractMin)) + O(|E |T (ModifyKey))

Times depend on PQ implementation

Heap based PQ:
BuildPQ : O(n), ExtractMin and ModifyKey : O(lg n)
So running time:
O(|V | log |V |+ |E | log |V |) = O(|E | log |V |)

With Fibonacci heaps: O(|V | log |V |+ |E |)

EECS 3101M W 19

Kruskal’s ALgorithm

Kruskal’s Algorithm

Edge based algorithm

Add the edges one at a time, in increasing weight order

The algorithm maintains A – a forest of trees. An edge is
accepted it if connects vertices of distinct trees

EECS 3101M W 19

Kruskal’s ALgorithm

Kruskal’s Algorithm: Requirements

We need an ADT that maintains a partition, i.e.,a collection of
disjoint sets
Operations:

MakeSet(S , x): S ← S ∪ x

Union(Si , Sj): S ← S–Si , Sj ∪ Si ∪ Sj

FindSet(S , x): returns unique Si ∈ S , where x ∈ Si

Good ADT’s for maintaining collections of disjoint sets are
covered in EECS 4101

EECS 3101M W 19

Kruskal’s ALgorithm

Kruskal’s Algorithm: Illustration

EECS 3101M W 19

Kruskal’s ALgorithm

Kruskal’s Algorithm: Illustration

EECS 3101M W 19

Kruskal’s ALgorithm

Kruskal’s Algorithm: Illustration

EECS 3101M W 19

Kruskal’s ALgorithm

Kruskal’s Algorithm: Illustration

EECS 3101M W 19

Kruskal’s ALgorithm

Kruskal’s Algorithm: Analysis

Proof of correctness: easy since minimum weight edge
has to be a safe edge

Sorting the edges O(|E | lg |E |) = O(|E | lg |V |)

O(|E |) calls to FindSet, Union

With advanced data structures, the running time is
O(|E | lg |V |)

	Graph Representations
	Minimum Spanning Trees
	Prim's ALgorithm
	Kruskal's ALgorithm

