EECS 3101 M: Design and Analysis of Algorithms

Suprakash Datta

Office: LAS 3043

Course page: http://www.eecs.yorku.ca/course/3101M Also on Moodle

Graph Representations

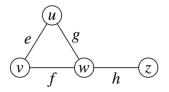
Edge list

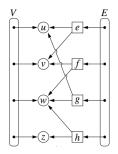
• Adjacency list

• Adjacency matrix

Edge Lists

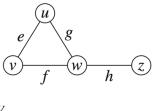
- Vertex object: reference to position in vertex sequence
- Edge object: origin vertex object, destination vertex object, reference to position in edge sequence
- Vertex sequence: sequence of vertex objects
- Edge sequence: sequence of edge objects

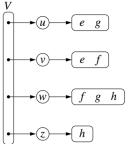




Adjacency Lists

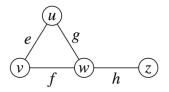
- Incidence sequence for each vertex: sequence of references to edge objects of incident edges
- Augmented edge objects: references to associated positions in incidence sequences of end vertices





Adjacency Matrix

- Edge list structure
- Augmented vertex objects: Integer key (index) associated with vertex
- 2D-array adjacency array: Reference to edge object for adjacent vertices, null for non nonadjacent vertices
- The "old fashioned" version just has 0 for no edge and 1 for edge



Performance

 <i>n</i> vertices, <i>m</i> edges no parallel edges no self-loops 	Edge List	Adjacency List	Adjacency Matrix
Space	<i>n</i> + <i>m</i>	n + m	n ²
incidentEdges(v)	т	$\deg(v)$	n
areAdjacent (v, w)	т	$\min(\deg(v), \deg(w))$	1
insertVertex(o)	1	1	n ²
<pre>insertEdge(v, w, o)</pre>	1	1	1
removeVertex(v)	т	deg(v)	n ²
removeEdge(e)	1	1	1

Minimum Spanning Trees (MST)

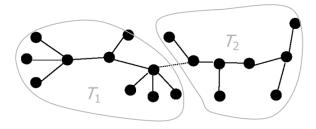
- Undirected, connected graph G = (V, E)
- Weight function $w : E \to \mathbb{R}$ (assigning cost or length or other values to edges)
- Spanning tree: tree that connects all vertices
- Minimum spanning tree: tree T that connects all the vertices and minimizes $w(T) = \sum_{(u,v)\in T} w(u,v)$

Minimum Spanning Trees: Questions

• Is DP applicable?

• Is a greedy strategy applicable?

MST: Optimal Substructure



- Removing the edge (u, v) partitions T into T_1 and T_2 : $w(T) = w(T_1) + w(T_2) + w(u, v)$
- We claim that T_1 is the MST of $G_1 = (V_1, E_1)$, the subgraph of G induced by vertices in T_1 .
- Similarly, T_2 is the MST of G_2

MST: Greedy Choice Property

Greedy choice property: locally optimal (greedy) choice yields a globally optimal solution

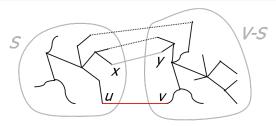
Theorem:

- Let G = (V, E), and let $S \subseteq V$ and
- Let (u, v) be min-weight edge in G connecting S to V S
- Then $(u, v) \in T$ for some MST T of G

EECS 3101M W 19

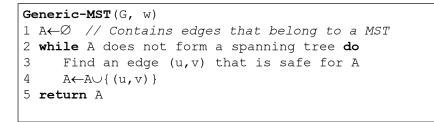
Minimum Spanning Trees

MST: Proof of Greedy Choice Property



- Let (u, v) be min-weight edge in G connecting S to V−S; suppose (u, v) ∉ T
- look at path from u to v in T
- swap (x, y), the first edge on path from u to v in T that crosses from S to V S, with (u, v)
- this decreases the cost of *T*: contradiction (*T* supposed to be MST)

Generic MST Algorithm



- Loop invariant: before each iteration, A is a subset of some MST
- Safe edge edge that preserves the loop invariant

Generic MST Algorithm - 2

```
MoreSpecific-MST(G, w)

1 A \leftarrow \emptyset // Contains edges that belong to a MST

2 while A does not form a spanning tree do

3.1 Make a cut (S, V-S) of G that respects A

3.2 Take the min-weight edge (u,v) connecting S to V-S

4 A \leftarrow A \cup \{(u,v)\}

5 return A
```

- A cut respects A if no edge of A crosses the cut
- Same LI: before each iteration, A is a subset of an MST
- Correctness proof in Theorem 23.1 in the text
- Many ways to choose cuts

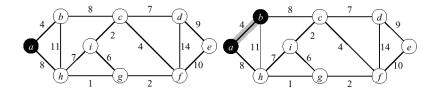
Prim's Algorithm

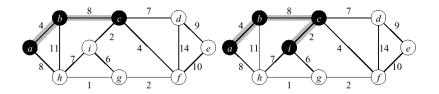
- Vertex based algorithm
- Grows one tree T, one vertex at a time
- Imagine a "blob" covering the portion of *T* already computed
- Label the vertices v outside the blob with key[v] = the minimum weight of an edge connecting v to a vertex in the blob, key[v] = ∞, if no such edge exists
- At each iteration, add the minimum weight vertex to T

Prim's Algorithm: Steps

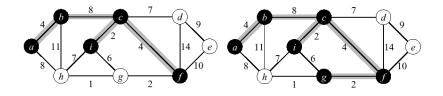
- Pseudocode on pg 634
- Put all vertices in a priority queue Q with labels ∞
- Remove the start vertex and set its label to 0
- While Q is not empty, remove the vertex u with the minimum label and add it to the tree;
 For each neighbour v of u in Q, if w(u, v) < label[v], set label[v] = w(u, v)

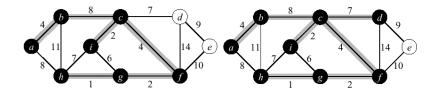
Prim's Algorithm: Illustration



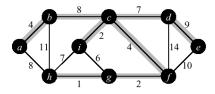


Prim's Algorithm: Illustration





Prim's Algorithm: Illustration



Prim's Algorithm: Analysis

- Proof of correctness on page 636
- Time = O(|V|T(ExtractMin)) + O(|E|T(ModifyKey))
- Times depend on PQ implementation
- Heap based PQ: BuildPQ : O(n), ExtractMin and ModifyKey: O(lg n) So running time: O(|V| log |V| + |E| log |V|) = O(|E| log |V|)
- With Fibonacci heaps: $O(|V| \log |V| + |E|)$

Kruskal's ALgorithm

Kruskal's Algorithm

• Edge based algorithm

• Add the edges one at a time, in increasing weight order

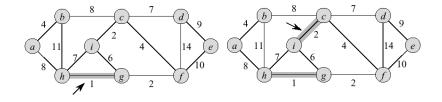
• The algorithm maintains *A* – a **forest** of trees. An edge is accepted it if connects vertices of distinct trees

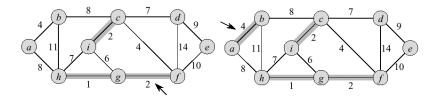
Kruskal's Algorithm: Requirements

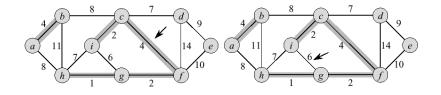
We need an ADT that maintains a partition, i.e., a collection of disjoint sets Operations:

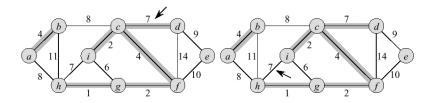
- MakeSet(S, x): $S \leftarrow S \cup x$
- $Union(S_i, S_j)$: $S \leftarrow S S_i, S_j \cup S_i \cup S_j$
- *FindSet*(S, x): returns unique $S_i \in S$, where $x \in S_i$

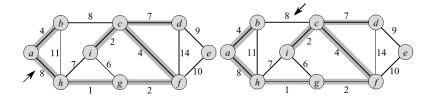
Good ADT's for maintaining collections of disjoint sets are covered in EECS 4101

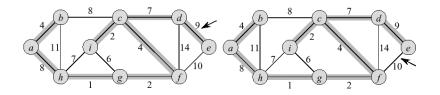




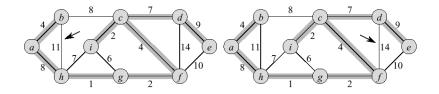








Kruskal's ALgorithm



Kruskal's ALgorithm

Kruskal's Algorithm: Analysis

- Proof of correctness: easy since minimum weight edge has to be a safe edge
- Sorting the edges $O(|E| \lg |E|) = O(|E| \lg |V|)$
- O(|E|) calls to FindSet, Union
- With advanced data structures, the running time is $O(|E| \lg |V|)$