
EECS 3101M W 19

EECS 3101 M: Design and Analysis of

Algorithms

Suprakash Datta
Office: LAS 3043

Course page: http://www.eecs.yorku.ca/course/3101M
Also on Moodle

http://www.eecs.yorku.ca/course/3101M

EECS 3101M W 19

More Dynamic Programming

Optimal Matrix Multiplication

Recall: Two matrices, A: n ×m matrix, and B : m × k
matrix, can be multiplied to get C with dimensions n× k ,
using nmk scalar multiplications

Matrix multiplication is associative: (AB)C = A(BC)

Order of multiplication affects efficiency:
e.g.: A1 = 20x30, A2 = 30x60, A3 = 60x40,
((A1A2)A3) : 20x30x60 + 20x60x40 = 84000
(A1(A2A3)) : 20x30x40 + 30x60x40 = 96000

Problem: compute A1A2 . . .An using the fewest number
of multiplications

EECS 3101M W 19

More Dynamic Programming

Alternative View: Optimal Parenthesization

Consider A× B × C ×D, where A is 30× 1, B is 1× 40,
C is 40× 10, D is 10× 25

Costs:

(AB)C)D = 1200 + 12000 + 7500 = 20700
(AB)(CD) = 1200 + 10000 + 30000 = 41200
A((BC)D) = 400 + 250 + 750 = 1400

We need to optimally parenthesize A1 × A2 × . . .× An,
where Ai is a di−1 × di matrix

EECS 3101M W 19

More Dynamic Programming

Optimal Parenthesization: Details

Let M(i , j) be the minimum number of multiplications
necessary to compute

∏j
k=i Ak

Observations:

The outermost parenthesis partition the chain of matrices
(i , j) at some k , (i ≤ k < j): (Ai . . .Ak)(Ak+1 . . .Aj)

The optimal parenthesization of matrices (i , j) has
optimal parenthesizations on either side of k , i.e., for
matrices (i , k) and (k + 1, j)

Since we do not know k , we try all possible values

EECS 3101M W 19

More Dynamic Programming

Optimal Parenthesization: Details - 2

Recurrence:
M(i , i) = 0, and for j > i ,
M(i , j) = mini≤k<j{M(i , k) + M(k + 1, j) + di−1dkdj}

A direct recursive implementation takes exponential time
– there is a lot of duplicated work (why?)

But there are only
(
n
2

)
+ n = Θ(n2) different

sub-problems (i , j), where 1 ≤ i ≤ j ≤ n

Thus, it requires only Θ(n2) space to store the optimal
cost M(i , j) for each of the sub-problems: about half of a
2-d array M[1..n, 1..n].

EECS 3101M W 19

More Dynamic Programming

Optimal Parenthesization: Details - 3

Steps of the solution

Which array element has the final solution? M[1, n]

Which array elements can be initialized directly? M[i , i]
for 1 ≤ i ≤ n

What order should the table be filled?
Tricky: the RHS of the recurrence must be available when
LHS is evaluated
So, the table must be filled diagonally

EECS 3101M W 19

More Dynamic Programming

Optimal Parenthesization: Details - 4

Algorithm: Starting with the main diagonal, and proceeding
diagonally, fill the upper triangular half of the table

Complexity: Each entry is computed in O(n) time, so
O(n3) algorithm. Argue that it is Θ(n3)

A simple recursive algorithm
Print −Optimal − Parenthesization(c , i , j) can be used to
reconstruct an optimal parenthesization.
For this need to record the minimum k found for each
table entry

Can also use memoized recursion

Exercise: Hand run the algorithm on d = [10, 20, 3, 5, 30]

EECS 3101M W 19

More Dynamic Programming

Comments about Dynamic Programming

Compute the value of an optimal solution in a bottom-up
fashion, so that you always have the necessary sub-results
pre-computed (or use memoization)

Construct an optimal solution from computed information
(which records a sequence of choices made that lead to
an optimal solution)

Let us study when this works

EECS 3101M W 19

More Dynamic Programming

When does Dynamic Programming Work?

To apply dynamic programming, we have to:

Show optimal substructure property – an optimal solution
to the problem contains within it optimal solutions to
sub-problems

This is a subtle point. It involves taking an optimal
solution and checking that subproblems are solved
optimally

The easiest way is to use a “cut-and-paste” argument

Best seen through examples

EECS 3101M W 19

More Dynamic Programming

Longest Common Subsequence (LCS)

Background:

Computing the similarity between strings is useful in
many applications and areas: e.g. spell checkers, test
retrieval, bioinformatics

Different applications require different notions of similarity

The longest common subsequence is one measure of
similarity

Dynamic programming is useful for computing other
measures as well

EECS 3101M W 19

More Dynamic Programming

LCS : definitions

Z is a subsequence of X , if it is possible to generate Z by
skipping zero or more characters from X

For example: X = “ACGGTTA′′, Y = “CGTAT ′′,
LCS(X ,Y) = “CGTA′′ or “CGTT ′′

To solve a LCS problem we have to find “skips” that
generate LCS(X ,Y) from X , and “skips” that generate
LCS(X ,Y) from Y

EECS 3101M W 19

More Dynamic Programming

LCS: Optimal Substructure

Subtle point: depends on the definition of subproblems.
Here we define LCS(i , j) as the subproblem – this is the LCS
of X [1..i],Y [1..j]

Let Z [1..k] be the LCS of of X [1..m] and Y [1..n]

If X [m] = Y [n], then Z [k] = X [m] = Y [n]. Is
Z [1..(k − 1)] an LCS of X [1..(m − 1)],Y [1..(n − 1)], i.e.,
LCS(m − 1, n − 1)?

If X [m] 6= Y [n] and Z [k] 6= X [m], then
Z = LCS(m − 1, n)?

If X [m] 6= Y [n] and Z [k] 6= Y [n], then
Z = LCS(m, n − 1)?

“Cut-and-paste” argument in each of the last 3 steps

EECS 3101M W 19

More Dynamic Programming

LCS: Recurrence

Let c[i , j] = |LCS(i , j)|
c[i , j] = 0 if i = 0 or j = 0
c[i , j] = c[i − 1, j − 1] + 1 if i , j > 0 and X [i] = Y [j]
c[i , j] = max(c[i − 1, j], c[i , j − 1]) if i , j > 0 and X [i] 6= Y [j]

Order of filling cells?

Complexity?
Constant work per cell

Actual LCS can be generated by remembering which
choice gave the maximum, as before

Exercise:Compute LCS of X = “ACGGTTA′′,Y = “CGTAT ′′

	More Dynamic Programming

