
EECS 3101M W 19

EECS 3101 M: Design and Analysis of

Algorithms

Suprakash Datta
Office: LAS 3043

Course page: http://www.eecs.yorku.ca/course/3101M
Also on Moodle

http://www.eecs.yorku.ca/course/3101M

EECS 3101M W 19

Correctness of Binary Search

More on Correctness of Algorithms: Binary Search

Precondition: A an array of sorted integers, key an integer
Postcondition: Index in which key is found, if it exists in the
array

Algorithmic idea:
1. Cut sublist in half
2. Determine which half the key would be in
3. Keep that half.

Note: LI must not assume that the element is present in the
list. So it should say something like
If the key is contained in the original list, then the key is
contained in the sublist

EECS 3101M W 19

Correctness of Binary Search

Pinning down the algorithm: Binary Search

If key ≤ A[mid] then key is in the left half
Else key is in the right half

Maintain sublist from i to j

Which element is mid? Must be consistent

Subtle issue: Suppose we use
mid = b i+j

2
c

If key ≥ A[mid] then i = mid
Else j = mid
A = 10 20 30 , key = 20

Similar issue may arise in Q2 of the assignment!

EECS 3101M W 19

An Old Algorithm

GCD of 2 Natural Numbers m, n

Precondition: m, n ∈ N
Postcondition: returns GCD(m, n)

Idea: if (m > n), GCD(m, n) = GCD(m–n, n)
Proof: k divides m − n, n ⇐⇒ k divides m, n

Can design iterative (or recursive) algorithm using this
idea

EECS 3101M W 19

An Old Algorithm

Efficiency of GCD algorithm

GCD(999999999999, 2) = GCD(999999999997, 2)

= GCD(999999999995, 2)

= GCD(999999999993, 2)

= . . .

= GCD(1, 2)

= GCD(2, 1)

= GCD(1, 1)

= 1

Running time = Θ(m). Is this a linear time algorithm?

EECS 3101M W 19

An Old Algorithm

GCD(m, n): Better Intuition

GCD(m, n) = GCD(m − n, n)

= GCD(m − 2n, n)

= . . .

= GCD(m − in, n) such that m − in < n

So i = bm
n
c, m − in = m mod n, and

GCD(m, n) = GCD(m mod n, n) = GCD(n,m mod n)

EECS 3101M W 19

An Old Algorithm

GCD(m, n): Euclid’s Algorithm (c 300 BC)

GCD(m, n)

1 x = m
2 y = n
3 while y > 0
4 xnew = y
5 ynew = x mod y
6 x = xnew
7 y = ynew
8 return x

Proof of correctness: Use LI GCD(m, n) = GCD(x , y)

EECS 3101M W 19

An Old Algorithm

Euclid’s Algorithm: Running time

Try a few cases
Case 1:

GCD(999999999, 2) = GCD(1, 2)

= GCD(2, 1)

= GCD(1, 1) = 1

Case 2:

GCD(999999999, 999999991) = GCD(8, 999999999991)

= GCD(999999999991, 8) = GCD(7, 8)

= GCD(8, 7) = GCD(1, 7)

= GCD(7, 1) = 1

EECS 3101M W 19

An Old Algorithm

Euclid’s Algorithm: Running time - contd.

Key Insight: Every two iterations, the value x decreases
by at least a factor of 2
i.e., the size of x decreases by at least one bit.

Proof by cases.
Case 1: n ≤ bm/2c. Since GCD(m, n) = GCD(n,m
mod n), so n ≤ bm/2c implies n has 1 fewer bit than m
after 1 iteration
Case 2: n > bm/2c. Again GCD(m, n) = GCD(n,m
mod n) = GCD(m mod n, n mod (m mod n)), and m
mod n = m − n < dm/2e.
Therefore the first argument has reduced by a factor of 2
and is thus 1 bit smaller after 2 iterations

Running time: O(log2m + log2 n) = O(logm)

EECS 3101M W 19

A New Paradigm: Divide and Conquer

Multiplying Complex Numbers

(From Jeff Edmonds’ slides)

INPUT: Two pairs of integers, (a, b), (c , d) representing
complex numbers, a + ib, c + id respectively.

OUTPUT: The pair [(ac − bd), (ad + bc)] representing
the product (ac − bd) + i(ad + bc)

Naive approach: 4 multiplications, 2 additions.
Suppose a multiplication costs $1 and an addition cost a
penny. The naive algorithm costs $4.02.

Q: Can you do better?

EECS 3101M W 19

A New Paradigm: Divide and Conquer

Multiplying Complex Numbers: Gauss’ Idea

m1 = ac
m2 = bd
A1 = m1–m2 = ac − bd
m3 = (a + b)(c + d) = ac + ad + bc + bd
A2 = m3–m1–m2 = ad + bc

Saves 1 multiplication! Uses more additions. The cost
now is $3.03.
This is good (saves 25% multiplications), but it leads to
more dramatic asymptotic improvement elsewhere!
(aside: look for connections to known algorithms)

Q: How fast can you multiply two n-bit numbers?

EECS 3101M W 19

A New Paradigm: Divide and Conquer

Multiplying 2 n-bit Numbers

Elementary school algorithm: Θ(n2) time complexity

Faster Algorithm: uses Divide-and-conquer strategy

EECS 3101M W 19

A New Paradigm: Divide and Conquer

Divide and Conquer

DIVIDE: the problem into smaller instances to the same
problem.

CONQUER: (Recursively) solve them.

COMBINE: Glue the answers together so as to obtain the
answer to your larger instance. Sometimes the last step
may be trivial.

EECS 3101M W 19

A New Paradigm: Divide and Conquer

Multiplying 2 n-bit Numbers using Divide and

Conquer

X = A B , Y = C D

X = A2n/2 + B ,Y = C2n/2 + D,
A,B ,C ,D are n/2 bit numbers

Naive approach: XY = AC2n + (AD + BC)2n/2 + BD
This gives Θ(n2) time complexity – same as before

EECS 3101M W 19

A New Paradigm: Divide and Conquer

Faster Multiplication (Karatsuba 1962)

Uses Gauss’ Idea

X = A2n/2 + B ,Y = C2n/2 + D,
A,B ,C ,D are n/2 bit numbers

e = AC , f = BD

XY = e2n + ((A + B)(C + D)− e − f)2n/2 + f
This gives Θ(nlog2 3) time complexity
– asymptotically faster than before; n1.58 vs n2

Fastest known: O(n log n log log n)

EECS 3101M W 19

A New Paradigm: Divide and Conquer

Matrix Multiplication

MatMult(A,B)

1 // return AB where A,B are n × n matrices
2 n = A.rows
3 C = CreateMatrix(n, n)
4 for i = 1 to n
5 for j = 1 to n
6 C [i , j] = 0
7 for k = 1 to n
8 C [i , j] = C [i , j] + A[i , k] ∗ B[k , j]
9 return C

the running time is Θ(n3)

EECS 3101M W 19

A New Paradigm: Divide and Conquer

Towards Faster Matrix Multiplication

Divide A,B into 4 n/2× n/2 matrices

C11 = A11B11 + A12B21

C12 = A11B12 + A12B22

C21 = A21B11 + A22B21

C22 = A21B12 + A22B22

This gives Θ(n3) time complexity – same as before

Need a better idea

EECS 3101M W 19

A New Paradigm: Divide and Conquer

Faster Matrix Multiplication: Using Gauss’ Idea

M1 = (A11 + A22)(B11 + B22

M2 = (A21 + A22)B11

M3 = A11(B12 − B22)
M4 = A22(B21 − B11)
M5 = (A11 + A12)B22

M6 = (A21 − A11)(B11 + B12)
M7 = (A12 − A22)(B21 + B22)

We now express the Cij in terms of Mk :
C11 = M1 + M4 −M5 + M7

C12 = M3 + M5

C21 = M2 + M4

C22 = M1 −M2 + M3 + M6

EECS 3101M W 19

A New Paradigm: Divide and Conquer

Faster Matrix Multiplication: Strassen’s Algorithm

only using 7 multiplications (one for each Mk) instead of 8

This gives Θ(nlg 7) time complexity
Proof needs the Master Theorem to analyze recurrences

Divide and conquer approach provides unexpected
improvements

EECS 3101M W 19

A Familiar Divide-and-Conquer Algorithm

Merge Sort

To sort n numbers

if n = 1 done!

DIVIDE: Divide the array into 2 lists of sizes dn/2e and
bn/2c

CONQUER: recursively sort the 2 lists

COMBINE: merge 2 sorted lists in Θ(n) time

EECS 3101M W 19

A Familiar Divide-and-Conquer Algorithm

Merge Sort

MergeSort(A, p, r)

1 if p < r
2 q = bp+r

2
c

3 MergeSort(A,p,q)
4 MergeSort(A,q+1,r)
5 Merge(A,p,q,r)

Merge(A, p, q, r)

Take the smallest of the two topmost elements of
sequences A[p..q] and A[q + 1..r] and put into the
resulting sequence. Repeat this, until both sequences
are empty. Copy the resulting sequence into A[p..r].

EECS 3101M W 19

A Familiar Divide-and-Conquer Algorithm

Merge Sort: Analysis

Correctness: combine induction and loop invariants

Run time: Can only express it recursively:
T (1) = Θ(1)
T (n) = 2T (n/2) + Θ(n)

EECS 3101M W 19

The Crux of Divide and Conquer

Finding the Maximum in an Array

Divide into 2 (approximate) halves

Find the maximum of each half

Return the greater of these two values

EECS 3101M W 19

The Crux of Divide and Conquer

Similar Problem: Finding the Maximum Subarray

Input: an array of integers
Output: find a contiguous subarray with the maximum sum

Brute force: Θ(n3) or Θ(n2)

Can we do better using divide and conquer?

Problem: The answer may not lie in either!

Key question: What information do we need from the two
halves to solve the big problem?

Related question: how do we get this information?

EECS 3101M W 19

The Crux of Divide and Conquer

Finding the Maximum Subarray

Ask 3 questions to each half:

What is the maximum subarray for each half?

What is the maximum “left-aligned subarray”?

What is the maximum “right-aligned subarray”?

Questions:

Is this enough? Proof of correctness?

What is the running time of this algorithm?

	Correctness of Binary Search
	An Old Algorithm
	A New Paradigm: Divide and Conquer
	A Familiar Divide-and-Conquer Algorithm
	The Crux of Divide and Conquer

