EECS 3101M W 19

EECS 3101 M: Design and Analysis of
Algorithms

Suprakash Datta
Office: LAS 3043

Course page: http://www.eecs.yorku.ca/course/3101M
Also on Moodle

http://www.eecs.yorku.ca/course/3101M

EECS 3101M W 19

More on Correctness

More on Correctness of Algorithms

Let us prove the correctness of the following algorithm for
computing the n-th power of a given real number.

POWER(y, 2)

1/ return y* where y € R,z € N
2 x=1

3 whilez>0

4 if opD(z2)

5 X =Xy

6 z=|z/2]

7 y =y

8 return x

EECS 3101M W 19

More on Correctness

Formulating the Loop Invariant

POWER(y, z)

1 x=1

2 whilez >0

3 if oDD(z2)

4 X =Xx*xYy
5 z = |z/2]

6 y =y

7 return x

How does the algorithm proceed?

The loop invariant for this code segment needs to capture the
entire state of the program, viz., variables x, y, z. Otherwise
proving the invariant may be difficult.

EECS 3101M W 19

More on Correctness

Formulating the Loop Invariant

POWER(y, z)

1 x=1

2 while z >0

3 if oDD(z)

4 X =X%*y
5 z=|z/2]

6 y=y°

7 return x

Since y, z are changed in the program, let yy, zy denote the
initial values of y, z respectively. We want to express the fact
that in each iteration the loop stores in x, y, raised to the
power “the last i — 1 digits of z". The part in quotes can be
compactly expressed as z; mod 2/

EECS 3101M W 19

More on Correctness

Formulating the Loop Invariant

@ Suppose the number of bits in z is n. Suppose also that
the initial values of x, y, z are xp, yo, Zo respectively. We
see that the while loop goes from i =1 to n. After
studying the program the following loop invariant seems

reasonable:
. . . i—1
LI: Before iteration i, z = | 521], x = yg° mod 2% 3nd
— 2t
Y= -

@ We prove Initialization, correctness and termination

EECS 3101M W 19

Proving Correctness: Initialization

Initialization: Before the first iteration, the invariant yields

0
z=|8| =2z, x=yg med 2 — y0 — 1 and y = y&’ = yo. All
these values match the code — x is initialized to 1 in line 1 and
y, z are unchanged.

EECS 3101M W 19

Proving Correctness: Maintenance

Assume that the loop invariant holds at the beginning of

iteration /. We want to show that it holds at the beginning of

iteration / 4+ 1. So before the current iteration, we have
L2’1J X — zomod21andy 2:1.

Lmes 4 and 5 (potentially) change x. Notice that z

mod 2 = 27 + z; mod 2/~ ! if the i*" bit of z is a 1;

otherwise zy mod 2/ = z; mod 2~1. Notice also that the i

bit of zy is a 1 iff z = | 52;] is odd. Therefore if the /™ bit of

2171
7y is a 0 x is unchanged. This is what lines 4,5 do.
Otherwise,
zy mod 2/~ 2i—1 2i4+zy mod 21 zy mod 2
X=XxYy =Y *YO =% =% '

which is exactly the loop invariant for y at the beginning of
the next iteration.

EECS 3101M W 19

More on Correctness

Proving Correctness: Maintenance

Line 6 changes z to |z/2| = |[5%]/2] = [3}], and line 7

changes y to (y¢)2 = yZ. Thus the maintenance proof is
complete.

EECS 3101M W 19

More on Correctness

Proving Correctness: Termination and Correctness

The loop terminates with i = n + 1.

Plugging this value of / into the invariant we get

__zyp mod2mtl-1 Z
X=¥ =Y

This is what the program was meant to do and it is therefore
proven correct.

Note that the final values of y, z are not really important,
since x is what the program returns.

EECS 3101M W 19

Correctness of Insertion Sort

Correctness of Insertion Sort

INSERTION-SORT(A)
1 forj = 2 to A.length

2 key = A[j]

3 / Insert A[j] into the sorted sequence A[l..j —1].
4 i=j—1

5 while / > 0 and A[i] > key

6 Ali +1] = Al

7 I=1i—-1

8 Ali + 1] = key

@ What is a good loop invariant?
@ It is easy to write a loop invariant if you understand what
the algorithm does.

EECS 3101M W 19

Correctness of Insertion Sort

Forming Loop Invariants

@ LI for outer loop:

EECS 3101M W 19

Correctness of Insertion Sort

Forming Loop Invariants

@ LI for outer loop: LI1: at the start of for loop iteration J,
A[l..j — 1] consists of elements originally in A[1..j — 1]
but in sorted order

EECS 3101M W 19

Correctness of Insertion Sort

Forming Loop Invariants

@ LI for outer loop: LI1: at the start of for loop iteration j,
A[l..j — 1] consists of elements originally in A[1..j — 1]
but in sorted order

@ The inner while loop moves elements finds the highest
position k so that A[k] < key and then moves
Alk ..j — 1] one position right without changing their
order.

Then, in the outer loop, the key element is inserted into
Alk] so that A[k — 1] < A[k] < Alk + 1].

EECS 3101M W 19

Correctness of Insertion Sort

Forming Loop Invariants

@ LI for outer loop: LI1: at the start of for loop iteration j,
A[l..j — 1] consists of elements originally in A[1..j — 1]
but in sorted order

@ The inner while loop moves elements finds the highest
position k so that A[k] < key and then moves
Alk ..j — 1] one position right without changing their
order.
Then, in the outer loop, the key element is inserted into
Alk] so that A[k — 1] < A[k] < Alk + 1].
LI2: at the start of for loop iteration i, key contains A[j]
and A[i + 2..j] consists of elements originally in
A[i +1..j — 1] but moved one spot to the right and the
original A[i + 1] > key

EECS 3101M W 19
Correctness of Insertion Sort

Correctness of LI2: Initialization

Putting i = j — 1 in LI2, we get the statement

key contains A[j] and A[j + 1../] consists of elements
originally in A[j..j — 1] but moved one spot to the right and
the original A[j] > key

This is true, because of line 2.

EECS 3101M W 19

Correctness of Insertion Sort

Correctness of LI2: Maintenance

LI2: at the start of for loop iteration i, key contains A[j] and
Ali +2..j] consists of elements originally in A[i +1..j — 1]
but moved one spot to the right and the original

Ali + 1] > key

We assume that LI2 holds before iteration /, the loop body
executes and will show that LI2 holds before iteration i — 1
(the loop index is decreasing).

Since the loop body executes we know that / > 0 and

A[i] > key. Also, key contains A[j]. The loop body moves
(copies) A[i] to A[i + 1], and decrements i. So LI2 holds
before iteration / — 1.

EECS 3101M W 19

Correctness of LI2: Termination and Correctness

The loop terminates when i = 0 or A[i] < key

Case 1: i = 0: Plugging i = 0 into LI2 we get:

at the start of for loop iteration i, key contains A[j] and
A[2..j] consists of elements originally in A[1..j — 1] but
moved one spot to the right and the original A[1] > key
Thus in this case the loop found the correct place kK = 0.

Case 2: A[i] < key. Plugging in this value of i, we get

Ali +2..] consists of elements originally in A[i +1..j — 1]
but moved one spot to the right and the original

Ali + 1] > key

So in both cases, the loop does what it was meant to do and
it is therefore correct.

EECS 3101M W 19
Correctness of Insertion Sort

Proving Correctness of LI1: Initialization

LI1: at the start of for loop iteration j, A[l..j — 1] consists of
elements originally in A[1..j — 1] but in sorted order

Before the first iteration, j = 2, LI1 trivially holds because
A[l..1] is a sorted array

EECS 3101M W 19

Correctness of Insertion Sort

Proving Correctness of LI1: Maintenance

Since the inner loop is correct, we know it moves elements
finds the highest position k so that A[k] < key and then moves
Alk . .j — 1] one position right without changing their order.

Then, in line 8 in the outer loop, the key element is inserted
into A[k] so that Alk — 1] < A[k] < A[k + 1].

Since LI1 held before the current iteration, A[l..j — 1] was
sorted and A[j] was inserted in the correct place, so A[L..]
consists of elements originally in A[1../] but in sorted order.

EECS 3101M W 19

Correctness of Insertion Sort

Proving Correctness of LI1: Termination and
Correctness

The loop terminates with j = A.length + 1

Plugging this value of j into LI1 we get
A[l.. A.length] consists of elements originally in
A[l..A.length] but in sorted order

This is what the loop (program) was meant to do and it is
therefore proven correct.

	More on Correctness
	Correctness of Insertion Sort

