
EECS 3101M W 19

EECS 3101 M: Design and Analysis of

Algorithms

Suprakash Datta
Office: LAS 3043

Course page: http://www.eecs.yorku.ca/course/3101M
Also on Moodle

http://www.eecs.yorku.ca/course/3101M


EECS 3101M W 19

More on Correctness

More on Correctness of Algorithms

Let us prove the correctness of the following algorithm for
computing the n-th power of a given real number.

power(y , z)

1 // return y z where y ∈ R , z ∈ N
2 x = 1
3 while z > 0
4 if odd(z)
5 x = x ∗ y
6 z = bz/2c
7 y = y 2

8 return x



EECS 3101M W 19

More on Correctness

Formulating the Loop Invariant

power(y , z)

1 x = 1
2 while z > 0
3 if odd(z)
4 x = x ∗ y
5 z = bz/2c
6 y = y 2

7 return x

How does the algorithm proceed?
The loop invariant for this code segment needs to capture the
entire state of the program, viz., variables x , y , z . Otherwise
proving the invariant may be difficult.



EECS 3101M W 19

More on Correctness

Formulating the Loop Invariant

power(y , z)

1 x = 1
2 while z > 0
3 if odd(z)
4 x = x ∗ y
5 z = bz/2c
6 y = y 2

7 return x

Since y , z are changed in the program, let y0, z0 denote the
initial values of y , z respectively. We want to express the fact
that in each iteration the loop stores in x , y0 raised to the
power “the last i − 1 digits of z0”. The part in quotes can be
compactly expressed as z0 mod 2i−1.



EECS 3101M W 19

More on Correctness

Formulating the Loop Invariant

Suppose the number of bits in z is n. Suppose also that
the initial values of x , y , z are x0, y0, z0 respectively. We
see that the while loop goes from i = 1 to n. After
studying the program the following loop invariant seems
reasonable:
LI: Before iteration i , z = b z0

2i−1 c, x = y z0 mod 2i−1

0 and

y = y 2i−1

0 .

We prove Initialization, correctness and termination



EECS 3101M W 19

More on Correctness

Proving Correctness: Initialization

Initialization: Before the first iteration, the invariant yields
z = b z0

20
c = z0, x = y z0 mod 20

0 = y 0
0 = 1 and y = y 20

0 = y0. All
these values match the code – x is initialized to 1 in line 1 and
y , z are unchanged.



EECS 3101M W 19

More on Correctness

Proving Correctness: Maintenance

Assume that the loop invariant holds at the beginning of
iteration i . We want to show that it holds at the beginning of
iteration i + 1. So before the current iteration, we have
z = b z0

2i−1 c, x = y z0 mod 2i−1

0 and y = y 2i−1

0 .
Lines 4 and 5 (potentially) change x . Notice that z0
mod 2i = 2i + z0 mod 2i−1 if the i th bit of z0 is a 1;
otherwise z0 mod 2i = z0 mod 2i−1. Notice also that the i th

bit of z0 is a 1 iff z = b z0
2i−1 c is odd. Therefore if the i th bit of

z0 is a 0 x is unchanged. This is what lines 4,5 do.
Otherwise,
x = x ∗ y = y z0 mod 2i−1

0 ∗ y 2i−1

0 = y 2i+z0 mod 2i−1

0 = y z0 mod 2i

0 ,
which is exactly the loop invariant for y at the beginning of
the next iteration.



EECS 3101M W 19

More on Correctness

Proving Correctness: Maintenance

Line 6 changes z to bz/2c = bb z0
2i−1 c/2c = b z0

2i
c, and line 7

changes y to (y 2i−1

0 )2 = y 2i

0 . Thus the maintenance proof is
complete.



EECS 3101M W 19

More on Correctness

Proving Correctness: Termination and Correctness

The loop terminates with i = n + 1.

Plugging this value of i into the invariant we get
x = y z0 mod 2n+1−1

0 = y z0
0 .

This is what the program was meant to do and it is therefore
proven correct.

Note that the final values of y , z are not really important,
since x is what the program returns.



EECS 3101M W 19

Correctness of Insertion Sort

Correctness of Insertion Sort

Insertion-Sort(A)

1 for j = 2 to A. length
2 key = A[j ]
3 // Insert A[j ] into the sorted sequence A[1 . . j − 1].
4 i = j − 1
5 while i > 0 and A[i ] > key
6 A[i + 1] = A[i ]
7 i = i − 1
8 A[i + 1] = key

What is a good loop invariant?
It is easy to write a loop invariant if you understand what
the algorithm does.



EECS 3101M W 19

Correctness of Insertion Sort

Forming Loop Invariants

LI for outer loop:

LI1: at the start of for loop iteration j ,
A[1 . . j − 1] consists of elements originally in A[1 . . j − 1]
but in sorted order

The inner while loop moves elements finds the highest
position k so that A[k] ≤ key and then moves
A[k . . j − 1] one position right without changing their
order.
Then, in the outer loop, the key element is inserted into
A[k] so that A[k − 1] ≤ A[k] ≤ A[k + 1].
LI2: at the start of for loop iteration i , key contains A[j ]
and A[i + 2 . . j ] consists of elements originally in
A[i + 1 . . j − 1] but moved one spot to the right and the
original A[i + 1] ≥ key



EECS 3101M W 19

Correctness of Insertion Sort

Forming Loop Invariants

LI for outer loop: LI1: at the start of for loop iteration j ,
A[1 . . j − 1] consists of elements originally in A[1 . . j − 1]
but in sorted order

The inner while loop moves elements finds the highest
position k so that A[k] ≤ key and then moves
A[k . . j − 1] one position right without changing their
order.
Then, in the outer loop, the key element is inserted into
A[k] so that A[k − 1] ≤ A[k] ≤ A[k + 1].
LI2: at the start of for loop iteration i , key contains A[j ]
and A[i + 2 . . j ] consists of elements originally in
A[i + 1 . . j − 1] but moved one spot to the right and the
original A[i + 1] ≥ key



EECS 3101M W 19

Correctness of Insertion Sort

Forming Loop Invariants

LI for outer loop: LI1: at the start of for loop iteration j ,
A[1 . . j − 1] consists of elements originally in A[1 . . j − 1]
but in sorted order

The inner while loop moves elements finds the highest
position k so that A[k] ≤ key and then moves
A[k . . j − 1] one position right without changing their
order.
Then, in the outer loop, the key element is inserted into
A[k] so that A[k − 1] ≤ A[k] ≤ A[k + 1].

LI2: at the start of for loop iteration i , key contains A[j ]
and A[i + 2 . . j ] consists of elements originally in
A[i + 1 . . j − 1] but moved one spot to the right and the
original A[i + 1] ≥ key



EECS 3101M W 19

Correctness of Insertion Sort

Forming Loop Invariants

LI for outer loop: LI1: at the start of for loop iteration j ,
A[1 . . j − 1] consists of elements originally in A[1 . . j − 1]
but in sorted order

The inner while loop moves elements finds the highest
position k so that A[k] ≤ key and then moves
A[k . . j − 1] one position right without changing their
order.
Then, in the outer loop, the key element is inserted into
A[k] so that A[k − 1] ≤ A[k] ≤ A[k + 1].
LI2: at the start of for loop iteration i , key contains A[j ]
and A[i + 2 . . j ] consists of elements originally in
A[i + 1 . . j − 1] but moved one spot to the right and the
original A[i + 1] ≥ key



EECS 3101M W 19

Correctness of Insertion Sort

Correctness of LI2: Initialization

Putting i = j − 1 in LI2, we get the statement
key contains A[j ] and A[j + 1 . . j ] consists of elements
originally in A[j . . j − 1] but moved one spot to the right and
the original A[j ] ≥ key
This is true, because of line 2.



EECS 3101M W 19

Correctness of Insertion Sort

Correctness of LI2: Maintenance

LI2: at the start of for loop iteration i , key contains A[j ] and
A[i + 2 . . j ] consists of elements originally in A[i + 1 . . j − 1]
but moved one spot to the right and the original
A[i + 1] ≥ key

We assume that LI2 holds before iteration i , the loop body
executes and will show that LI2 holds before iteration i − 1
(the loop index is decreasing).
Since the loop body executes we know that i > 0 and
A[i ] > key . Also, key contains A[j ]. The loop body moves
(copies) A[i ] to A[i + 1], and decrements i . So LI2 holds
before iteration i − 1.



EECS 3101M W 19

Correctness of Insertion Sort

Correctness of LI2: Termination and Correctness

The loop terminates when i = 0 or A[i ] ≤ key

Case 1: i = 0: Plugging i = 0 into LI2 we get:
at the start of for loop iteration i , key contains A[j ] and
A[2 . . j ] consists of elements originally in A[1 . . j − 1] but
moved one spot to the right and the original A[1] ≥ key
Thus in this case the loop found the correct place k = 0.

Case 2: A[i ] ≤ key . Plugging in this value of i , we get
A[i + 2 . . j ] consists of elements originally in A[i + 1 . . j − 1]
but moved one spot to the right and the original
A[i + 1] ≥ key
So in both cases, the loop does what it was meant to do and
it is therefore correct.



EECS 3101M W 19

Correctness of Insertion Sort

Proving Correctness of LI1: Initialization

LI1: at the start of for loop iteration j , A[1 . . j − 1] consists of
elements originally in A[1 . . j − 1] but in sorted order
Before the first iteration, j = 2, LI1 trivially holds because
A[1 . . 1] is a sorted array



EECS 3101M W 19

Correctness of Insertion Sort

Proving Correctness of LI1: Maintenance

Since the inner loop is correct, we know it moves elements
finds the highest position k so that A[k] ≤ key and then moves
A[k . . j − 1] one position right without changing their order.

Then, in line 8 in the outer loop, the key element is inserted
into A[k] so that A[k − 1] ≤ A[k] ≤ A[k + 1].

Since LI1 held before the current iteration, A[1 . . j − 1] was
sorted and A[j ] was inserted in the correct place, so A[1 . . j ]
consists of elements originally in A[1 . . j ] but in sorted order.



EECS 3101M W 19

Correctness of Insertion Sort

Proving Correctness of LI1: Termination and

Correctness

The loop terminates with j = A.length + 1

Plugging this value of j into LI1 we get
A[1 . .A.length] consists of elements originally in
A[1 . .A.length] but in sorted order

This is what the loop (program) was meant to do and it is
therefore proven correct.


	More on Correctness
	Correctness of Insertion Sort

