EECS 3101M W 19

EECS 3101 M: Design and Analysis of
Algorithms

Suprakash Datta
Office: LAS 3043

Course page: http://www.eecs.yorku.ca/course/3101M
Also on Moodle

http://www.eecs.yorku.ca/course/3101M

EECS 3101M W 19

Reasoning about algorithms

Reasoning (formally) about algorithms

@ 1/0 specs: Needed for correctness proofs, performance
analysis.
E.g. for sorting in non-decreasing order:
INPUT: A[1...n] - an array of integers
OUTPUT: a permutation B of A such that
B[1] < B[2] < ... < B[n]

o CORRECTNESS: The algorithm satisfies the output
specs for EVERY valid input.

@ ANALYSIS: Compute the performance of the algorithm,
e.g., in terms of running time

EECS 3101M W 19

Reasoning about algorithms

Correctness

@ How can we show that the algorithm works correctly for
all possible inputs of all possible sizes?

@ Exhaustive testing not feasible.

@ Analytical techniques are useful essential here.

EECS 3101M W 19

Assertions

Assertions

@ An assertion is a statement about the state of the
program at a specified point in its execution

@ May be implemented in code, as an error-check

o Types:

e Preconditions: Any assumptions that must be true
about the code that follows

e Postconditions: The statement of what must be true
about the preceding code

e Exit condition: The statement of what must be true to
exit a loop or a method or program

e Loop invariants: Some property that holds in each
iteration of the loop, and is useful for proving
correctness of the loop

EECS 3101M W 19

Correctness Proofs

Correctness Definition: Code Segment

e (pre — condition) N\ (code) = (post — condition)

@ If the input meets the preconditions, then the output
must meet the post-conditions.

@ If the input does not meet the preconditions, then
nothing is required.

EECS 3101M W 19

Correctness Proofs

Uses

@ If the assertions can be checked automatically, correctness
checking can be automated

e Caveat: undecidability issues

e EECS 3311 will teach you to do this in practice

EECS 3101M W 19

Correctness Proofs

Proving correctness - A Simple Example

Problem: find the maximum element of an array of integers

FIND-MAX(A)

1/ INPUT: A[l..n] - an array of integers
2 // OUTPUT: an element m of A such that m > A[j],
for all 1 <j < A.length
max = A[1]
for j = 2 to A.length
if max < A[j]
max = A[j]
return max

~No B~ Ww

Can you think of another algorithm?

EECS 3101M W 19

Correctness Proofs

Proof by Contradiction

Proof: Suppose the algorithm is incorrect. Then for some
input A, either

@ max is not an element of A or

@ A has an element A[j] such that max < A[/]
max is initialized to and assigned to elements of A —so (1) is
impossible
After the j-th iteration of the for-loop (lines 4 - 6),

max > A[j]. From lines 5,6, max only increases. Therefore,
upon termination, max > A[j], which contradicts (2).

EECS 3101M W 19

Correctness Proofs

Proof by Contradiction - Remarks

@ The preceding proof reasons about the whole algorithm

@ It is possible to prove correctness by induction as well:
this is left as an exercise for you

@ What if the algorithm was very big and had many
function calls, nested loops, if-then's and other standard
commands?

@ For example....

EECS 3101M W 19

Correctness Proofs

Pseudocode Example (page 18) Revisited

INSERTION-SORT(A)
1 forj = 2 to A.length

2 key = A[j]

3 / Insert A[j] into the sorted sequence A[l.. — 1].
4 i=j—1

5 while / > 0 and A[i] > key

6 Ali +1] = Al

7 I=1i—-1

8 Ali + 1] = key

EECS 3101M W 19

Correctness Proofs

Proof by Contradiction - Remarks

@ The preceding proof reasons about the whole algorithm

@ |t is possible to prove correctness by induction as well:
this is left as an exercise for you

e What if the algorithm was very big and had many
function calls, nested loops, if-then's and other standard
commands?

@ Even proving that the algorithm terminates may be
non-trivial!

Need a simpler, more “modular’ strategy.

EECS 3101M W 19

Correctness Proofs

Loop Invariants

Correctness Proofs for Loops

Decompose the job into checking:

@ Pre-condition for the loop is true

EECS 3101M W 19

Correctness Proofs

Loop Invariants

Correctness Proofs for Loops

Decompose the job into checking:

@ Pre-condition for the loop is true

@ Loop Invariant holds for each iteration

EECS 3101M W 19

Correctness Proofs

Loop Invariants

Correctness Proofs for Loops

Decompose the job into checking:

@ Pre-condition for the loop is true
@ Loop Invariant holds for each iteration

@ Termination condition is met

EECS 3101M W 19

Correctness Proofs

Loop Invariants

Correctness Proofs for Loops

Decompose the job into checking:

@ Pre-condition for the loop is true
@ Loop Invariant holds for each iteration
@ Termination condition is met

@ Upon termination the post-condition holds

EECS 3101M W 19

Correctness Proofs

Loop Invariants

Correctness Proofs for Loops

Decompose the job into checking:

@ Pre-condition for the loop is true

@ Loop Invariant holds for each iteration

@ Termination condition is met

@ Upon termination the post-condition holds

@ Note the similarities with induction.

EECS 3101M W 19

Correctness Proofs

Loop Invariants

Proving correctness of FindMax with LI

FIND-MAX(A)

1/ INPUT: A[l..n] - an array of integers

2 // OUTPUT: an element m of A such that m > A[j],
for all 1 < j < A.length

3 max = A[l]

4 for j = 2 to A.length

5 if max < A[j]

6 max = A[j]

7 return max

What is the precondition of the loop?

EECS 3101M W 19

Correctness Proofs

Loop Invariants

Correctness of FindMax: Steps

Show that:
@ Pre-condition for the loop: max contains A[1]

@ Loop Invariant for each iteration:
At the beginning of iteration j of the for loop, max
contains the maximum of A[l..j — 1]

@ Termination condition: j = A.length 4+ 1

@ Partial correctness and Termination implies
post-condition: max is the correct maximum

EECS 3101M W 19

Correctness Proofs

Loop Invariants

Proof of the Loop Invariant - Partial Correctness

LI: At the beginning of iteration j of the for loop, max
contains the maximum of A[l..j — 1]

e Initialization: max contains A[1], so L/(1) is true

@ Maintenance: For j > 2, assume L/(j — 1); so before
iteration j — 1, max = maximum of A[l..j — 2]

Case 1: A[j — 1] = maximum of A[1l..j — 1]. In lines
5-6, max is set to A[j — 1]

Case 2: A[j — 1] is not the maximum of A[l..j — 1],
so the maximum of A[l..j — 1] is in
A[l..j — 2]. By our assumption, max already
has this value, and max is unchanged in this
iteration.

EECS 3101M W 19
Loop Invariants

Proof of the Loop Invariant - Termination

@ Termination: When the loop terminates, j = A.length + 1
(WHY?)

@ Partial correctness and Termination imply the
post-condition:
LI: At the beginning of iteration j of the for loop, max
contains the maximum of A[l..j — 1]
At termination: j = A.length + 1
Therefore, max contains the maximum of A[1..A.length]
Therefore, it is the correct maximum

EECS 3101M W 19
Loop Invariants
Loop Invariants - Summary

We must show three things about loop invariants:
@ Initialization — it is true prior to the first iteration

@ Maintenance — if it is true before an iteration, it remains
true before the next iteration

@ Termination — when loop terminates the invariant gives a
useful property to show the correctness of the algorithm

| Partial Correctness A Termination = Correctness |

EECS 3101M W 19

Correctness Proofs

Loop Invariants

What about more complex algorithms?

INSERTION-SORT(A)
1 for j = 2 to A.length

2 key = A[j]

3 / Insert A[j] into the sorted sequence A[l..j — 1].
4 i=j—1

5 while / > 0 and A[i] > key

6 Ali + 1] = Ali]

7 I=1i—-1

8 Ali + 1] = key

@ How to formulate loop invariants (2 loops, so 2 LI needed)
@ How to prove correctness?

	Reasoning about algorithms
	Assertions
	Correctness Proofs
	Loop Invariants

