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Reasoning about algorithms

Reasoning (formally) about algorithms

I/O specs: Needed for correctness proofs, performance
analysis.
E.g. for sorting in non-decreasing order:
INPUT: A[1 . . . n] - an array of integers
OUTPUT: a permutation B of A such that
B[1] ≤ B[2] ≤ . . . ≤ B[n]

CORRECTNESS: The algorithm satisfies the output
specs for EVERY valid input.

ANALYSIS: Compute the performance of the algorithm,
e.g., in terms of running time
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Reasoning about algorithms

Correctness

How can we show that the algorithm works correctly for
all possible inputs of all possible sizes?

Exhaustive testing not feasible.

Analytical techniques are useful essential here.
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Assertions

Assertions

An assertion is a statement about the state of the
program at a specified point in its execution

May be implemented in code, as an error-check

Types:

Preconditions: Any assumptions that must be true
about the code that follows
Postconditions: The statement of what must be true
about the preceding code
Exit condition: The statement of what must be true to
exit a loop or a method or program
Loop invariants: Some property that holds in each
iteration of the loop, and is useful for proving
correctness of the loop
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Correctness Proofs

Correctness Definition: Code Segment

〈pre − condition〉 ∧ 〈code〉 ⇒ 〈post − condition〉

If the input meets the preconditions, then the output
must meet the post-conditions.

If the input does not meet the preconditions, then
nothing is required.
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Correctness Proofs

Uses

If the assertions can be checked automatically, correctness
checking can be automated

Caveat: undecidability issues

EECS 3311 will teach you to do this in practice



EECS 3101M W 19

Correctness Proofs

Proving correctness - A Simple Example

Problem: find the maximum element of an array of integers

Find-max(A)

1 // INPUT: A[1..n] - an array of integers
2 // OUTPUT: an element m of A such that m ≥ A[j ],

for all 1 ≤ j ≤ A.length
3 max = A[1]
4 for j = 2 to A. length
5 if max < A[j ]
6 max = A[j ]
7 return max

Can you think of another algorithm?
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Correctness Proofs

Proof by Contradiction

Proof: Suppose the algorithm is incorrect. Then for some
input A, either

1 max is not an element of A or

2 A has an element A[j ] such that max < A[j ]

max is initialized to and assigned to elements of A – so (1) is
impossible
After the j-th iteration of the for-loop (lines 4 - 6),
max ≥ A[j ]. From lines 5,6, max only increases. Therefore,
upon termination, max ≥ A[j ], which contradicts (2).
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Correctness Proofs

Proof by Contradiction - Remarks

The preceding proof reasons about the whole algorithm

It is possible to prove correctness by induction as well:
this is left as an exercise for you

What if the algorithm was very big and had many
function calls, nested loops, if-then’s and other standard
commands?

For example....
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Correctness Proofs

Pseudocode Example (page 18) Revisited

Insertion-Sort(A)

1 for j = 2 to A. length
2 key = A[j ]
3 // Insert A[j ] into the sorted sequence A[1 . . j − 1].
4 i = j − 1
5 while i > 0 and A[i ] > key
6 A[i + 1] = A[i ]
7 i = i − 1
8 A[i + 1] = key
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Correctness Proofs

Proof by Contradiction - Remarks

The preceding proof reasons about the whole algorithm

It is possible to prove correctness by induction as well:
this is left as an exercise for you

What if the algorithm was very big and had many
function calls, nested loops, if-then’s and other standard
commands?

Even proving that the algorithm terminates may be
non-trivial!

Need a simpler, more “modular” strategy.
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Correctness Proofs

Loop Invariants

Correctness Proofs for Loops

Decompose the job into checking:

Pre-condition for the loop is true

Loop Invariant holds for each iteration

Termination condition is met

Upon termination the post-condition holds

Note the similarities with induction.
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Correctness Proofs

Loop Invariants

Proving correctness of FindMax with LI

Find-max(A)

1 // INPUT: A[1..n] - an array of integers
2 // OUTPUT: an element m of A such that m ≥ A[j ],

for all 1 ≤ j ≤ A.length
3 max = A[1]
4 for j = 2 to A. length
5 if max < A[j ]
6 max = A[j ]
7 return max

What is the precondition of the loop?
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Correctness Proofs

Loop Invariants

Correctness of FindMax: Steps

Show that:

Pre-condition for the loop: max contains A[1]

Loop Invariant for each iteration:
At the beginning of iteration j of the for loop, max
contains the maximum of A[1..j − 1]

Termination condition: j = A.length + 1

Partial correctness and Termination implies
post-condition: max is the correct maximum
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Correctness Proofs

Loop Invariants

Proof of the Loop Invariant - Partial Correctness

LI: At the beginning of iteration j of the for loop, max
contains the maximum of A[1..j − 1]

Initialization: max contains A[1], so LI (1) is true

Maintenance: For j > 2, assume LI (j − 1); so before
iteration j − 1, max = maximum of A[1..j − 2]

Case 1: A[j − 1] = maximum of A[1..j − 1]. In lines
5-6, max is set to A[j − 1]

Case 2: A[j − 1] is not the maximum of A[1..j − 1],
so the maximum of A[1..j − 1] is in
A[1..j − 2]. By our assumption, max already
has this value, and max is unchanged in this
iteration.
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Correctness Proofs

Loop Invariants

Proof of the Loop Invariant - Termination

Termination: When the loop terminates, j = A.length + 1
(WHY?)

Partial correctness and Termination imply the
post-condition:
LI: At the beginning of iteration j of the for loop, max
contains the maximum of A[1..j − 1]
At termination: j = A.length + 1
Therefore, max contains the maximum of A[1..A.length]
Therefore, it is the correct maximum
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Correctness Proofs

Loop Invariants

Loop Invariants - Summary

We must show three things about loop invariants:

Initialization – it is true prior to the first iteration

Maintenance – if it is true before an iteration, it remains
true before the next iteration

Termination – when loop terminates the invariant gives a
useful property to show the correctness of the algorithm

Partial Correctness ∧ Termination ⇒ Correctness
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Correctness Proofs

Loop Invariants

What about more complex algorithms?

Insertion-Sort(A)

1 for j = 2 to A. length
2 key = A[j ]
3 // Insert A[j ] into the sorted sequence A[1 . . j − 1].
4 i = j − 1
5 while i > 0 and A[i ] > key
6 A[i + 1] = A[i ]
7 i = i − 1
8 A[i + 1] = key

How to formulate loop invariants (2 loops, so 2 LI needed)

How to prove correctness?
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