
EECS 3101 M: Design and Analysis of

Algorithms

Suprakash Datta
Office: LAS 3043

Course page: http://www.eecs.yorku.ca/course/3101M
Also on Moodle

S. Datta (York Univ.) EECS 3101M W 19 1 / 17

http://www.eecs.yorku.ca/course/3101M


Administrivia

Lectures: Tue-Thurs 1:00-2:30 pm (HNE 038)

Tests (35%): 3 tests, 15% each (worst test to be scaled to 5%)

final (50%)

Homework (15%)

Office hours: Mon-Wed 3-4 pm or by appointment at LAS 3043

Textbook: Thomas H. Cormen, Charles E. Leiserson, Ronald L.
Rivest and Clifford Stein, Introduction to Algorithms, 3rd edition,
MIT Press and McGraw-Hill, 2009.

S. Datta (York Univ.) EECS 3101M W 19 2 / 17



Homework, Grades

We will be paperless, except for tests and final examination

All course information will be online – Moodle and on the public
course webpage

All homework MUST be typed. You will get a zero if you submit
handwritten solutions. You may use Office, Google Docs, LaTeX,
or other packages but all submissions must be in pdf format.

We will use crowdmark for grading. Follow instructions for
re-appraisal requests.

All returned work will be in electronic form (including tests).

I would like to use iClicker

Grades will be on moodle

S. Datta (York Univ.) EECS 3101M W 19 3 / 17



Tutorials and Other Administrivia

Tutorials (1.5 hours/week) are mandatory. These will be led by
a TA. Most tutorials will be on problem solving

Missed tests cannot be made up. If you have a valid medical
reason, the weight will be transferred to the final

If you have serious non-medical reasons (having work is not
one), talk to me. We will deal with those on an ad hoc basis

Plagiarism: Will be dealt with very strictly. Read the detailed
policies on the webpage

S. Datta (York Univ.) EECS 3101M W 19 4 / 17



Resources

We will follow the textbook closely

There are more resources than you can use – including books,
lecture slides and notes, online texts, video lectures, assignments

Problems in Algorithms by Parberry is downloadable at
https://larc.unt.edu/ian/books/free/poa.pdf; This is
an invaluable resource for testing your understanding

Coding interview sites

Jeff Edmonds’ (www.cse.yorku.ca/~jeff) textbook has many,
many worked examples

Andy Mirzaian (http://www.cse.yorku.ca/~andy) has very
good notes and slides for this course

S. Datta (York Univ.) EECS 3101M W 19 5 / 17

https://larc.unt.edu/ian/books/free/poa.pdf
www.cse.yorku.ca/~jeff
http://www.cse.yorku.ca/~andy


The Big Picture

The design and analysis of algorithms is a FOUNDATIONAL
skill – needed in almost every field in Computer Science and
Engineering.

Programming and algorithm design go hand in hand.

Coming up with a solution to a problem is not of much use, if
you cannot argue that the solution is

Correct, and

Efficient

S. Datta (York Univ.) EECS 3101M W 19 6 / 17



The Big Picture - 2

Previous courses (1012,1020,2030, maybe 2011):
Given a problem:

Figure out an algorithm

Code it, debug, test with “good” inputs

Some idea of running time, asymptotic notation

Study some well known algorithms: e.g. Binary Search,
QuickSort, (maybe) Depth-first-search of graphs

Possibly: some idea of lower bounds for it

S. Datta (York Univ.) EECS 3101M W 19 7 / 17



Course Objectives

Problem-solving: Design of algorithms – paradigms

Divide-and-Conquer

Greedy

Dynamic Programming

Graph Algorithms

Review some very simple data structures; e.g., Heaps

Reasoning about ALGORITHMS

Correctness proofs: Loop invariants, induction

Efficiency analysis.

Comparison of algorithms

Reasoning about PROBLEMS

Lower bounds. “Is your algorithm the best possible?”

Intractability: “The problem seems to be hard – is it provably
intractable?”

Complexity classes “Are there inherently hard problems?”

S. Datta (York Univ.) EECS 3101M W 19 8 / 17



Secondary Course Objectives

A new way of thinking – abstracting out the algorithmic problem(s):

Extract the algorithmic problem and ignore the “irrelevant”
details

Focuses your thinking, more efficient problem solving

Programming contest problems teach this skill more effectively
than exercises in algorithms texts.

S. Datta (York Univ.) EECS 3101M W 19 9 / 17



Role of Mathematics

Needed for correctness proofs: Pre-condition – post-condition
framework; similar ideas used in program verification,
Computer-aided design.

Needed for performance analysis: Computing running time

Specific topics

(Very) elementary logic.

Simple proofs: Induction, proof by contradiction

(Rarely) Elementary calculus

Summation of series.

Simple counting techniques.

Elementary graph theory

S. Datta (York Univ.) EECS 3101M W 19 10 / 17



My Expectations

You will attend classes and tutorials regularly

Want to solidify your algorithmic foundations

Ask for help when needed

Follow academic honesty regulations (see the class webpage for
more details on policies).

S. Datta (York Univ.) EECS 3101M W 19 11 / 17



To do well in this class

Study with pen and paper

Ask for help early

Practice, practice, practice. The Parberry book on problems and
coding interview sites are good sources for exercises

Follow along in class rather than take notes

Ask questions in class or outside class

Keep up with the class

Read the book, not just the slides

Be timely

S. Datta (York Univ.) EECS 3101M W 19 12 / 17



Examples

Sorting a set of numbers (seen before)

Finding shortest paths in weighted graphs (seen before?)

Optimal matrix multiplication – compute A1A2 . . .An using the
fewest number of multiplications; e.g.:
A1 = 20x30, A2 = 30x60, A3 = 60x40,
((A1A2)A3) : 20x30x60 + 20x60x40 = 84000
(A1(A2A3)) : 20x30x40 + 30x60x40 = 96000

Traveling Salesman Problem: Find the minimum weight cycle in
an weighted undirected graph which visits each vertex exactly
once and returns to the starting vertex
Brute force: find all possible permutations of the vertices and
compute cycle costs in each case. Find the maximum.

Q: This is exponential time. Can we do better?

S. Datta (York Univ.) EECS 3101M W 19 13 / 17



Pseudocode

Machine/language independent statements; similar to C/C++,
Java, Python

Very simple commands: assignment, equality tests, branch
statements, for/while loops, function calls

No objects/classes (usually)

Comments, just like in real programs

Should be at a level that can be translated into a program easily

As precise as programs, without the syntax headaches (may
contain lines of English)

Not concerned with software engg issues like data abstraction,
modularity and error handling

S. Datta (York Univ.) EECS 3101M W 19 14 / 17



Pseudocode Conventions

assignment: =, equality testing: ==

if, for, while uses indentations rather than begin-end or
parentheses

∞ used as a symbol

Array notations: A. length, A[1 . . j − 1].

My notation can vary slightly from the book

You can use pseudocode, English or a combination

S. Datta (York Univ.) EECS 3101M W 19 15 / 17



Pseudocode Example (page 18)

Insertion-Sort(A)

1 for j = 2 to A. length
2 key = A[j ]
3 // Insert A[j ] into the sorted sequence A[1 . . j − 1].
4 i = j − 1
5 while i > 0 and A[i ] > key
6 A[i + 1] = A[i ]
7 i = i − 1
8 A[i + 1] = key

S. Datta (York Univ.) EECS 3101M W 19 16 / 17



Next: Correctness of Algorithms

QUESTIONS?

S. Datta (York Univ.) EECS 3101M W 19 17 / 17


	Course policies
	Course Objectives etc
	Pseudocode

